


Agilent Acqiris
Instruments
Programmer’s Reference
Manual: Agilent Acqiris
Instruments

July 2012

Release J-Rev F

U1092-90002
Agilent Technologies

Notices
© Agilent Technologies, Inc. 2011

No part of this manual may be reproduced
in any form or by any means (including
electronic storage and retrieval or transla-
tion into a foreign language) without prior
agreement and written consent from Agi-
lent Technologies, Inc. as governed by
United States and international copyright
laws.

Manual Part Number

U1092-90002

Edition

Edition, July 26, 2012

Printed in USA

Agilent Technologies, Inc.
1400 Fountaingrove Pkwy 
Santa Rosa, CA 95403

Warranty

The material contained in this docu-
ment is provided “as is,” and is sub-
ject to being changed, without notice,
in future editions. Further, to the max-
imum extent permitted by applicable
law, Agilent disclaims all warranties,
either express or implied, with regard
to this manual and any information
contained herein, including but not
limited to the implied warranties of
merchantability and fitness for a par-
ticular purpose. Agilent shall not be
liable for errors or for incidental or
consequential damages in connection
with the furnishing, use, or perfor-
mance of this document or of any
information contained herein. Should
Agilent and the user have a separate
written agreement with warranty
terms covering the material in this
document that conflict with these
terms, the warranty terms in the sep-
arate agreement shall control.

Technology Licenses

The hardware and/or software described in
this document are furnished under a
license and may be used or copied only in
accordance with the terms of such license.

Restricted Rights Legend

If software is for use in the performance of
a U.S. Government prime contract or sub-
contract, Software is delivered and
licensed as “Commercial computer soft-
ware” as defined in DFAR 252.227-7014
(June 1995), or as a “commercial item” as
defined in FAR 2.101(a) or as “Restricted

computer software” as defined in FAR
52.227-19 (June 1987) or any equivalent
agency regulation or contract clause. Use,
duplication or disclosure of Software is
subject to Agilent Technologies’ standard
commercial license terms, and non-DOD
Departments and Agencies of the U.S. Gov-
ernment will receive no greater than
Restricted Rights as defined in FAR
52.227-19(c)(1-2) (June 1987). U.S. Govern-
ment users will receive no greater than
Limited Rights as defined in FAR 52.227-14
(June 1987) or DFAR 252.227-7015 (b)(2)
(November 1995), as applicable in any
technical data.

Safety Notices

CAUTION

A CAUTION notice denotes a haz-
ard. It calls attention to an operat-
ing procedure, practice, or the like
that, if not correctly performed or
adhered to, could result in damage
to the product or loss of important
data. Do not proceed beyond a
CAUTION notice until the indicated
conditions are fully understood and
met.

WARNING

A WARNING notice denotes a
hazard. It calls attention to an
operating procedure, practice, or
the like that, if not correctly per-
formed or adhered to, could result
in personal injury or death. Do not
proceed beyond a WARNING
notice until the indicated condi-
tions are fully understood and met.

Foreword
Programmer’s Reference Manual

Instrumentation firmware is thoroughly tested and thought to be functional
but it is supplied “as is” with no warranty for specified performance. No
responsibility is assumed for the use or the reliability of software, firmware
or any equipment that is not supplied by Agilent or its affiliated companies.

You can download the latest version of this manual from
http://www.agilent.com/ by clicking on Manuals in the Technical Support
section and then entering a model number. You can also visit our web site at
http://www.agilent.com/find/acqiris. At Agilent we appreciate and
encourage customer input. If you have a suggestion related to the content
of this manual or the presentation of information, please contact your local
Agilent Acqiris product line representative or the dedicated Agilent Acqiris
Technical Support (ACQIRIS_SUPPORT@agilent.com).

Acqiris Product Line Information

USA (800) 829-4444

Asia - Pacific 61 3 9210 2890

Europe 41 (22) 884 32 90
3

http://www.agilent.com/
http://www.agilent.com/find/acqiris
mailto:ACQIRIS_SUPPORT@agilent.com

4

 Programmer’s Reference Manual

1

TABLE OF CONTENTS
Foreword 3

TABLE OF CONTENTS 5

1 Introduction
5

Message to the User 9
Using this Manual 9
Conventions Used in This Manual 10
Warning Regarding Medical Use 10
2 Device Driver Function Reference
Status values and Error codes 11
API Function classification 15
AgMD1Fundamental.h functions 15

 16
API Function descriptions 18

Acqrs_calibrate 18
Acqrs_calibrateCancel 19
Acqrs_calibrateEx 20
Acqrs_calLoad 22
Acqrs_calRequired 24
Acqrs_calSave 26
Acqrs_close 28
Acqrs_closeAll 29
Acqrs_configLogicDevice 30
Acqrs_errorMessage 32
Acqrs_getDevType 34
Acqrs_getDevTypeByIndex 35
Acqrs_getInstrumentData 36
Acqrs_getInstrumentInfo 37
Acqrs_getNbrChannels 40
Acqrs_getNbrInstruments 41
Acqrs_getVersion 42
Acqrs_init 43
Acqrs_InitWithOptions 44
Acqrs_logicDeviceIO 46
Acqrs_powerSystem 48
Acqrs_reset 49
Acqrs_resetMemory 50
Acqrs_resumeControl 51
Acqrs_setAttributeString 52
Acqrs_setLEDColor 53
Programmer’s Reference Manual

6

1

Acqrs_setSimulationOptions 54
Acqrs_suspendControl 55
AcqrsD1_acqDone 57
AcqrsD1_acquire 58
AcqrsD1_acquireEx 59
AcqrsD1_bestNominalSamples 60
AcqrsD1_bestSampInterval 61
AcqrsD1_configAvgConfig 63
AcqrsD1_configAvgConfigInt32 70
AcqrsD1_configAvgConfigReal64 76
AcqrsD1_configChannelCombination 78
AcqrsD1_configControlIO 80
AcqrsD1_configExtClock 83
AcqrsD1_configFCounter 85
AcqrsD1_configHorizontal 87
AcqrsD1_configMemory 88
AcqrsD1_configMemoryEx 89
AcqrsD1_configMode 91
AcqrsD1_configMultiInput 94
AcqrsD1_configSetupArray 95
AcqrsD1_configTrigClass 97
AcqrsD1_configTrigSource 99
AcqrsD1_configTrigTV 101
AcqrsD1_configVertical 103
 AcqrsD1_errorMessage 105
AcqrsD1_errorMessageEx 106
AcqrsD1_forceTrig 107
AcqrsD1_forceTrigEx 108
AcqrsD1_freeBank 110
AcqrsD1_getAvgConfig 111
AcqrsD1_getAvgConfigInt32 113
AcqrsD1_getAvgConfigReal64 114
AcqrsD1_getChannelCombination 115
AcqrsD1_getControlIO 116
AcqrsD1_getExtClock 118
AcqrsD1_getFCounter 120
AcqrsD1_getHorizontal 122
AcqrsD1_getMemory 123
AcqrsD1_getMemoryEx 124
AcqrsD1_getMode 126
AcqrsD1_getMultiInput 127
AcqrsD1_getSetupArray 128
AcqrsD1_getTrigClass 130
AcqrsD1_getTrigSource 132
Programmer’s Reference Manual

1

Programmer’s Reference Manual

AcqrsD1_getTrigTV 134
AcqrsD1_getVertical 136
AcqrsD1_multiInstrAutoDefine 138
AcqrsD1_multiInstrDefine 140
AcqrsD1_multiInstrUndefineAll 142
AcqrsD1_procDone 143
AcqrsD1_processData 144
AcqrsD1_readData 146
AcqrsD1_readFCounter 156
AcqrsD1_reportNbrAcquiredSegments 157
AcqrsD1_resetDigitizerMemory 159
AcqrsD1_restoreInternalRegisters 160
AcqrsD1_stopAcquisition 162
AcqrsD1_stopProcessing 163
AcqrsD1_waitForEndOfAcquisition 164
AcqrsD1_waitForEndOfProcessing 165
7

8

1

Programmer’s Reference Manual

Introduction 1

Programmer’s Reference Manual
1
Introduction
Message to the User
Congratulations on having purchased an Agilent Technologies Acqiris data
conversion product. Acqiris Digitizers, rs, Analyzers are high-speed data
acquisition modules designed for capturing high frequency electronic
signals. To get the most out of the products we recommend that you read
the accompanying product User Manual, the Programmer's Guide and this
Programmer’s Reference Manual carefully. We trust that the product you
have purchased as well as the accompanying software will meet with your
expectations and provide you with a high quality solution to your data
conversion applications.
Using this Manual

This guide assumes you are familiar with the operation of a personal

computer (PC) running a Windows 2000/XP/Vista/7 (32/64) or other
supported operating system. In addition you ought to be familiar with the
fundamentals of the programming environment that you will be using to
control your Acqiris product. It also assumes you have a basic
understanding of the principles of data acquisition using either, a
waveform digitizer, a digital oscilloscope, or other similar instrument.

This Programmer’s Reference manual is divided into 2 sections.

Chapter 1 “Introduction", describes what can be found where in the
documentation and how to use it.

Chapter 2 “Device Driver Function Reference", contains a full device
driver function reference. This documents the traditional
Application Program Interface (API) as it can be used in
the following environments:

LabVIEW, MATLAB MEX, Visual C++.
9

1 Introduction

Conventions Used in This Manual
10
The following conventions are used in this manual:
NOTE Denotes a note, which alerts you to important information.
Italic text denotes a warning, caution, or note.

Bold Italic text is used to emphasize an important point in the text or
a note

mono text is used for sections of code, programming examples
and operating system commands.

Certain features are common to several different modules. For increased
readability we have defined the following families:

DC271-FAMILY DC135/DC140/DC211/DC211A/DC241/DC241A/
 DC271/DC271A/DC271AR/DP214/DP235/DP240

AP-FAMILY AP240/AP235/AP100/AP101/AP200/AP201

12-bit-FAMILY DC440/DC438/DC436/DP310/DP308/DP306

10-bit-FAMILY DC122/DC152/DC222/DC252/DC282

U1071A-FAMILY all U1071A variants, DP1400, U1091AD28
Warning Regarding Medical Use
The Agilent Acqiris cards are not designed with components and testing
procedures that would ensure a level of reliability suitable for use in
treatment and diagnosis of humans. Applications of these cards involving
medical or clinical treatment can create a potential for accidental injury
caused by product failure, or by errors on the part of the user. These cards
are not intended to be a substitute for any form of established process or
equipment used to monitor or safeguard human health and safety in
medical treatment.
WARNING The modules discussed in this manual have not been designed for
making direct measurements on the human body. Users who
connect an Agilent module to a human body do so at their own
risk.
Programmer’s Reference Manual

Device Driver Function Reference 2

Programmer’s Reference Manual
2
Device Driver Function Reference

All function calls require the argument instrumentID in order to identify the
Acqiris Instrument to which the call is directed. The only exceptions are
the initialization/termination functions:

Acqrs_calibrateEx Acqrs_close
Acqrs_calibrate
Acqrs_closeAll Acqrs_getNbrInstruments Acqrs_init
Acqrs_InitWithOptions Acqrs_setSimulationOptions
AcqrsD1_multiInstrAutoDefine AcqrsD1_multiInstrUndefineAll
The functions Acqrs_init, Acqrs_InitWithOptions,
AcqrsD1_multiInstrDefine, actually return instrument identifiers at
initialization time, for subsequent use in the other function calls.
Status values and Error codes

All function calls return a status value of type ViStatus with information
about the success or failure of the call. All Acqiris specific values can be
found in the header file AcqirisErrorCodes.h and are shown in Table 2-1.
The generic ones, defined by the VXIplug&play Systems Alliance, are listed
in the header file vpptype.h (VXIplug&play instrument driver header file,
which includes visatype.h: fundamental VISA data types and macro
definitions). They are reproduced in Table 2-2 for convenience. The header
file AgMD1FundamentalErrorCodes.h shows the common error codes
associated with each function.
Acqiris Error Codes Hex value Decimal value
ACQIRIS_ERROR_FILE_NOT_FOUND BFFA4800 -1074116608
ACQIRIS_ERROR_PATH_NOT_FOUND BFFA4801 -1074116607
ACQIRIS_ERROR_INVALID_HANDLE BFFA4803 -1074116605
ACQIRIS_ERROR_NOT_SUPPORTED BFFA4805 -1074116603
ACQIRIS_ERROR_INVALID_WINDOWS_PARAM BFFA4806 -1074116602
ACQIRIS_ERROR_NO_DATA BFFA4807 -1074116601
ACQIRIS_ERROR_NO_ACCESS BFFA4808 -1074116600
ACQIRIS_ERROR_BUFFER_OVERFLOW BFFA4809 -1074116599
ACQIRIS_ERROR_BUFFER_NOT_64BITS_ALIGNED BFFA480A -1074116598
ACQIRIS_ERROR_BUFFER_NOT_32BITS_ALIGNED BFFA480B -1074116597
ACQIRIS_ERROR_CAL_FILE_CORRUPTED BFFA480C -1074116596
ACQIRIS_ERROR_CAL_FILE_VERSION BFFA480D -1074116595
ACQIRIS_ERROR_CAL_FILE_SERIAL BFFA480E -1074116594
ACQIRIS_ERROR_ALREADY_OPEN BFFA4840 -1074116544
ACQIRIS_ERROR_SETUP_NOT_AVAILABLE BFFA4880 -1074116480
ACQIRIS_ERROR_IO_WRITE BFFA48A0 -1074116448
ACQIRIS_ERROR_IO_READ BFFA48A1 -1074116447
ACQIRIS_ERROR_IO_DEVICE_OFF BFFA48A2 -1074116446
ACQIRIS_ERROR_IO_VME_CONFIG BFFA48A3 -1074116445

Table 2-1
11

2 Device Driver Function Reference

ACQIRIS_ERROR_IO_VME_ACCESS BFFA48A4 -1074116444
ACQIRIS_ERROR_INTERNAL_DEVICENO_INVALID BFFA48C0 -1074116416
ACQIRIS_ERROR_TOO_MANY_DEVICES BFFA48C1 -1074116415
ACQIRIS_ERROR_EEPROM_DATA_INVALID BFFA48C2 -1074116414
ACQIRIS_ERROR_INIT_STRING_INVALID BFFA48C3 -1074116413
ACQIRIS_ERROR_INSTRUMENT_NOT_FOUND BFFA48C4 -1074116412
ACQIRIS_ERROR_INSTRUMENT_RUNNING BFFA48C5 -1074116411
ACQIRIS_ERROR_INSTRUMENT_STOPPED BFFA48C6 -1074116410
ACQIRIS_ERROR_MODULES_NOT_ON_SAME_BUS BFFA48C7 -1074116409
ACQIRIS_ERROR_NOT_ENOUGH_DEVICES BFFA48C8 -1074116408
ACQIRIS_ERROR_NO_MASTER_DEVICE BFFA48C9 -1074116407
ACQIRIS_ERROR_PARAM_STRING_INVALID BFFA48CA -1074116406
ACQIRIS_ERROR_COULD_NOT_CALIBRATE BFFA48CB -1074116405
ACQIRIS_ERROR_CANNOT_READ_THIS_CHANNEL BFFA48CC -1074116404
ACQIRIS_ERROR_PRETRIGGER_STILL_RUNNING BFFA48CD -1074116403
ACQIRIS_ERROR_CALIBRATION_FAILED BFFA48CE -1074116402
ACQIRIS_ERROR_MODULES_NOT_CONTIGUOUS BFFA48CF -1074116401
ACQIRIS_ERROR_INSTRUMENT_ACQ_LOCKED BFFA48D0 -1074116400
ACQIRIS_ERROR_INSTRUMENT_ACQ_NOT_LOCKED BFFA48D1 -1074116399
ACQIRIS_ERROR_EEPROM2_DATA_INVALID BFFA48D2 -1074116398
ACQIRIS_ERROR_INSTRUMENT_IN_USE BFFA48D3 -1074116397
ACQIRIS_ERROR_MEZZIO_IN_USE BFFA48D4 -1074116396
ACQIRIS_ERROR_MEZZIO_ACQ_TIMEOUT BFFA48D5 -1074116395
ACQIRIS_ERROR_DEVICE_ALREADY_OPEN BFFA48D6 -1074116394
ACQIRIS_ERROR_EEPROM_CRC_FAILED BFFA48D7 -1074116393
ACQIRIS_ERROR_INVALID_GEOMAP_FILE BFFA48E0 -1074116384
ACQIRIS_ERROR_ACQ_TIMEOUT BFFA4900 -1074116352
ACQIRIS_ERROR_OVERLOAD BFFA4901 -1074116351
ACQIRIS_ERROR_PROC_TIMEOUT BFFA4902 -1074116350
ACQIRIS_ERROR_LOAD_TIMEOUT BFFA4903 -1074116349
ACQIRIS_ERROR_READ_TIMEOUT BFFA4904 -1074116348
ACQIRIS_ERROR_INTERRUPTED BFFA4905 -1074116347
ACQIRIS_ERROR_WAIT_TIMEOUT BFFA4906 -1074116346
ACQIRIS_ERROR_CLOCK_SOURCE BFFA4907 -1074116345
ACQIRIS_ERROR_OPERATION_CANCELLED BFFA4908 -1074116344
ACQIRIS_ERROR_FIRMWARE_NOT_AUTHORIZED BFFA4A00 -1074116096
ACQIRIS_ERROR_FPGA_1_LOAD BFFA4A01 -1074116095
ACQIRIS_ERROR_FPGA_2_LOAD BFFA4A02 -1074116094
ACQIRIS_ERROR_FPGA_3_LOAD BFFA4A03 -1074116093
ACQIRIS_ERROR_FPGA_4_LOAD BFFA4A04 -1074116092
ACQIRIS_ERROR_FPGA_5_LOAD BFFA4A05 -1074116091
ACQIRIS_ERROR_FPGA_6_LOAD BFFA4A06 -1074116090
ACQIRIS_ERROR_FPGA_7_LOAD BFFA4A07 -1074116089
ACQIRIS_ERROR_FPGA_8_LOAD BFFA4A08 -1074116088
ACQIRIS_ERROR_FIRMWARE_NOT_SUPPORTED BFFA4A09 -1074116087
ACQIRIS_ERROR_FPGA_1_FLASHLOAD_NO_INIT BFFA4A10 -1074116080
ACQIRIS_ERROR_FPGA_1_FLASHLOAD_NO_DONE BFFA4A11 -1074116079
ACQIRIS_ERROR_FPGA_2_FLASHLOAD_NO_INIT BFFA4A12 -1074116078
ACQIRIS_ERROR_FPGA_2_FLASHLOAD_NO_DONE BFFA4A13 -1074116077
ACQIRIS_ERROR_SELFCHECK_MEMORY BFFA4A20 -1074116064
ACQIRIS_ERROR_SELFCHECK_DAC BFFA4A21 -1074116063

Table 2-1
12 Programmer’s Reference Manual

Device Driver Function Reference 2

ACQIRIS_ERROR_SELFCHECK_RAMP BFFA4A22 -1074116062
ACQIRIS_ERROR_SELFCHECK_PCIE_LINK BFFA4A23 -1074116061
ACQIRIS_ERROR_SELFCHECK_PCIE_DEVICE BFFA4A24 -1074116060
ACQIRIS_ERROR_FLASH_ACCESS_TIMEOUT BFFA4A30 -1074116048
ACQIRIS_ERROR_FLASH_FAILURE BFFA4A31 -1074116047
ACQIRIS_ERROR_FLASH_READ BFFA4A32 -1074116046
ACQIRIS_ERROR_FLASH_WRITE BFFA4A33 -1074116045
ACQIRIS_ERROR_FLASH_EMPTY BFFA4A34 -1074116044
ACQIRIS_ERROR_ATTR_NOT_FOUND BFFA4B00 -1074115840
ACQIRIS_ERROR_ATTR_WRONG_TYPE BFFA4B01 -1074115839
ACQIRIS_ERROR_ATTR_IS_READ_ONLY BFFA4B02 -1074115838
ACQIRIS_ERROR_ATTR_IS_WRITE_ONLY BFFA4B03 -1074115837
ACQIRIS_ERROR_ATTR_ALREADY_DEFINED BFFA4B04 -1074115836
ACQIRIS_ERROR_ATTR_IS_LOCKED BFFA4B05 -1074115835
ACQIRIS_ERROR_ATTR_INVALID_VALUE BFFA4B06 -1074115834
ACQIRIS_ERROR_ATTR_CALLBACK_STATUS BFFA4B07 -1074115833
ACQIRIS_ERROR_ATTR_CALLBACK_EXCEPTION BFFA4B08 -1074115832
ACQIRIS_ERROR_KERNEL_VERSION BFFA4C00 -1074115584
ACQIRIS_ERROR_UNKNOWN_ERROR BFFA4C01 -1074115583
ACQIRIS_ERROR_OTHER_WINDOWS_ERROR BFFA4C02 -1074115582
ACQIRIS_ERROR_VISA_DLL_NOT_FOUND BFFA4C03 -1074115581
ACQIRIS_ERROR_OUT_OF_MEMORY BFFA4C04 -1074115580
ACQIRIS_ERROR_UNSUPPORTED_DEVICE BFFA4C05 -1074115579
ACQIRIS_ERROR_PARAMETER9 BFFA4D09 -1074115319
ACQIRIS_ERROR_PARAMETER10 BFFA4D0A -1074115318
ACQIRIS_ERROR_PARAMETER11 BFFA4D0B -1074115317
ACQIRIS_ERROR_PARAMETER12 BFFA4D0C -1074115316
ACQIRIS_ERROR_PARAMETER13 BFFA4D0D -1074115315
ACQIRIS_ERROR_PARAMETER14 BFFA4D0E -1074115314
ACQIRIS_ERROR_PARAMETER15 BFFA4D0F -1074115313
ACQIRIS_ERROR_NBR_SEG BFFA4D10 -1074115312
ACQIRIS_ERROR_NBR_SAMPLE BFFA4D11 -1074115311
ACQIRIS_ERROR_DATA_ARRAY BFFA4D12 -1074115310
ACQIRIS_ERROR_SEG_DESC_ARRAY BFFA4D13 -1074115309
ACQIRIS_ERROR_FIRST_SEG BFFA4D14 -1074115308
ACQIRIS_ERROR_SEG_OFF BFFA4D15 -1074115307
ACQIRIS_ERROR_FIRST_SAMPLE BFFA4D16 -1074115306
ACQIRIS_ERROR_DATATYPE BFFA4D17 -1074115305
ACQIRIS_ERROR_READMODE BFFA4D18 -1074115304
ACQIRIS_ERROR_VM_FILE_EXTENSION BFFA4D50 -1074115248
ACQIRIS_ERROR_VM_FILE_VERSION BFFA4D51 -1074115247
ACQIRIS_ERROR_VM_FILE_READ BFFA4D52 -1074115246
ACQIRIS_ERROR_VM_FILE_INVALID BFFA4D53 -1074115245
ACQIRIS_ERROR_VM_VERIFICATION BFFA4D54 -1074115244
ACQIRIS_ERROR_VM_CRC BFFA4D55 -1074115243
ACQIRIS_ERROR_HW_FAILURE BFFA4D80 -1074115200
ACQIRIS_ERROR_HW_FAILURE_CH1 BFFA4D81 -1074115199
ACQIRIS_ERROR_HW_FAILURE_CH2 BFFA4D82 -1074115198
ACQIRIS_ERROR_HW_FAILURE_CH3 BFFA4D83 -1074115197
ACQIRIS_ERROR_HW_FAILURE_CH4 BFFA4D84 -1074115196
ACQIRIS_ERROR_HW_FAILURE_CH5 BFFA4D85 -1074115195

Table 2-1
Programmer’s Reference Manual 13

2 Device Driver Function Reference

ACQIRIS_ERROR_HW_FAILURE_CH6 BFFA4D86 -1074115194
ACQIRIS_ERROR_HW_FAILURE_CH7 BFFA4D87 -1074115193
ACQIRIS_ERROR_HW_FAILURE_CH8 BFFA4D88 -1074115192
ACQIRIS_ERROR_HW_FAILURE_EXT1 BFFA4DA0 -1074115168
ACQIRIS_ERROR_MAC_T0_ADJUSTMENT BFFA4DC0 -1074115136
ACQIRIS_ERROR_MAC_ADC_ADJUSTMENT BFFA4DC1 -1074115135
ACQIRIS_ERROR_MAC_RESYNC_ADJUSTMENT BFFA4DC2 -1074115134
ACQIRIS_WARN_SETUP_ADAPTED 3FFA4E00 1073368576
ACQIRIS_WARN_READPARA_NBRSEG_ADAPTED 3FFA4E10 1073368592
ACQIRIS_WARN_READPARA_NBRSAMP_ADAPTED 3FFA4E11 1073368593
ACQIRIS_WARN_NOT_CALIBRATED 3FFA4E12 1073368594
ACQIRIS_WARN_ACTUAL_DATASIZE_ADAPTED 3FFA4E13 1073368595
ACQIRIS_WARN_UNEXPECTED_TRIGGER 3FFA4E14 1073368596
ACQIRIS_WARN_READPARA_FLAGS_ADAPTED 3FFA4E15 1073368597
ACQIRIS_WARN_SIMOPTION_STRING_UNKNOWN 3FFA4E16 1073368598
ACQIRIS_WARN_INSTRUMENT_IN_USE 3FFA4E17 1073368597
ACQIRIS_WARN_HARDWARE_TIMEOUT 3FFA4E60 1073368672
ACQIRIS_WARN_RESET_IGNORED 3FFA4E61 1073368671
ACQIRIS_WARN_SELFCHECK_MEMORY 3FFA4F00 1073368832
ACQIRIS_WARN_CLOCK_SOURCE 3FFA4F01 1073368833
ACQIRIS_WARN_NUMERIC_OVERFLOW 3FFA4F20 1073368864

Table 2-1
14
Error code Hex value Decimal value
VI_SUCCESS 0 0
VI_ERROR_PARAMETER1 BFFC0001 -1074003967
VI_ERROR_PARAMETER2 BFFC0002 -1074003966
VI_ERROR_PARAMETER3 BFFC0003 -1074003965
VI_ERROR_PARAMETER4 BFFC0004 -1074003964
VI_ERROR_PARAMETER5 BFFC0005 -1074003963
VI_ERROR_PARAMETER6 BFFC0006 -1074003962
VI_ERROR_PARAMETER7 BFFC0007 -1074003961
VI_ERROR_PARAMETER8 BFFC0008 -1074003960
VI_ERROR_FAIL_ID_QUERY BFFC0011 -1074003951
VI_ERROR_INV_RESPONSE BFFC0012 -1074003950

Table 2-2
If important parameters supplied by the user (e.g. an instrumentID) are
found to be invalid, most functions do not execute and return an error code
of the type VI_ERROR_PARAMETERi, where i = 1, 2,... corresponds to the
argument number.

If the user attempts (with a function AcqrsD1_configXXXX) to set a
digitizer parameter to a value outside of its acceptable range, the function
typically adapts the parameter to the closest allowed value and returns
ACQIRIS_WARN_SETUP_ADAPTED. The digitizer parameters that are
actually in use can be retrieved with the query functions
AcqrsD1_getXXXX.

Data are always returned through pointers to user-allocated variables or
arrays.
Programmer’s Reference Manual

Device Driver Function Reference 2

Programmer’s Reference Manual
Some parameters are labeled "Currently ignored". It is recommended to
supply the value "0" (ViInt32) or "0.0" (ViReal64) in order to be compatible
with future products that may offer additional functionality.
API Function classification
The API has been split into two families:
• Acqrs Generic functions - AqBx - these can be used for all Acqiris

Instruments

• AcqrsD1 Digitizer functions - AqDx - to be used for Digitizers and
Analyzers

All of these functions are still contained in one library called
AgMD1Fundamental. The LabView interface is also split into the two
corresponding AqXX parts.

AgMD1Fundamental.h functions

Generic Initialization Functions Function Name
Number of Physical Instruments Acqrs_getNbrInstruments
Initialization Acqrs_init
Initialization with Options Acqrs_InitWithOptions
Simulation Options Acqrs_setSimulationOptions

Generic Calibration Functions
Calibrate Instrument Acqrs_calibrate
Calibrate Instrument Extended Acqrs_calibrateEx
Interrupt Calibration Acqrs_calibrateCancel
Load calibration values from a file Acqrs_calLoad
Query about the necessity of self calibration Acqrs_calRequired
Save all calibration values in a file Acqrs_calSave

Generic Query Functions
Instrument Basic Data Acqrs_getInstrumentData
Instrument Information Acqrs_getInstrumentInfo
Number of Channels Acqrs_getNbrChannels

Generic Utility Functions
Version Acqrs_getVersion
Error Message Acqrs_errorMessage
Reset Acqrs_reset
Set LED Color Acqrs_setLEDColor
Close an instrument Acqrs_close
Close all instruments Acqrs_closeAll
Resume the control of an instrument that was suspended Acqrs_resumeControl
Suspend control of an instrument Acqrs_suspendControl
Prepare for entry or return from the system power down state Acqrs_powerSystem
15

2 Device Driver Function Reference

s

Digitizer Initialization Functions Function Name
Number of Physical Instruments (deprec.) AcqrsD1_getNbrPhysicalInstruments
MultiInstrument Auto Define AcqrsD1_multiInstrAutoDefine
Initialization (deprec.) AcqrsD1_init
Initialization with Options (deprec.) AcqrsD1_InitWithOptions
Simulation Options (deprec.) AcqrsD1_setSimulationOptions

Digitizer Calibration Functions
Calibrate Instrument (deprec.) AcqrsD1_calibrate
Calibrate Instrument Extended (deprec.) AcqrsD1_calibrateEx

Digitizer Configuration Functions
Configure Vertical Settings AcqrsD1_configVertical
Configure Horizontal Settings AcqrsD1_configHorizontal
Configure Channel Combination AcqrsD1_configChannelCombination
Configure Trigger Class AcqrsD1_configTrigClass
Configure Trigger Source AcqrsD1_configTrigSource
Configure Trigger TV AcqrsD1_configTrigTV
Configure Memory Settings AcqrsD1_configMemory
Configure Memory Settings (extended) AcqrsD1_configMemoryEx
Configure External Clock AcqrsD1_configExtClock
Configure Digitizer Mode AcqrsD1_configMode
Configure Multiplexer Input AcqrsD1_configMultiInput
Configure Control IO AcqrsD1_configControlIO
Configure Frequency Counter AcqrsD1_configFCounter
Configure Averager Configuration Attribute AcqrsD1_configAvgConfig

AcqrsD1_configAvgConfigInt32
AcqrsD1_configAvgConfigReal64

Configure (program) on-board FPGA (deprec.) AcqrsD1_configLogicDevice
Configure Array of Setup Parameters AcqrsD1_configSetupArray
Logical Device IO AcqrsD1_logicDeviceIO
MultiInstrument Manual Define AcqrsD1_multiInstrDefine
MultiInstrument Undefine AcqrsD1_multiInstrUndefineAll
Setup Streaming in SC Analyzer AcqrsD1_setAttributeString

Digitizer Acquisition Control Functions
Start Acquisition AcqrsD1_acquire
Start Acquisition (Extended) AcqrsD1_acquireEx
Query Acquisition Status AcqrsD1_acqDone
Software Trigger AcqrsD1_forceTrig
Software Trigger (Extended) AcqrsD1_forceTrigEx
Stop Acquisition AcqrsD1_stopAcquisition
Wait for End of Acquisition AcqrsD1_waitForEndOfAcquisition
Number of Acquired Segments AcqrsD1_reportNbrAcquiredSegment

Digitizer Data Transfer Functions
Universal Waveform Read AcqrsD1_readData
ulate Data AcqrsD1_ulateData
Averaged Data AcqrsD1_averagedData
Read Frequency Counter AcqrsD1_readFCounter
16 Programmer’s Reference Manual

Device Driver Function Reference 2

Digitizer Query Functions Function Name
Query External Clock AcqrsD1_getExtClock
Query Horizontal Settings AcqrsD1_getHorizontal
Query Channel Combination AcqrsD1_getChannelCombination
Query Memory Settings AcqrsD1_getMemory
Query Memory Settings (extended) AcqrsD1_getMemoryEx
Query Multiplexer Input AcqrsD1_getMultiInput
Query Trigger Class AcqrsD1_getTrigClass
Query Trigger Source AcqrsD1_getTrigSource
Query Trigger TV AcqrsD1_getTrigTV
Query Vertical Settings AcqrsD1_getVertical
Query Digitizer Mode AcqrsD1_getMode
Query Control IO AcqrsD1_getControlIO
Query Frequency Counter AcqrsD1_getFCounter
Query Averager Configuration AcqrsD1_getAvgConfig

AcqrsD1_getAvgConfigInt32
AcqrsD1_getAvgConfigReal64

Instrument Basic Data (deprec.) AcqrsD1_getInstrumentData
Instrument Information (deprec.) AcqrsD1_getInstrumentInfo
Number of Channels AcqrsD1_getNbrChannels
Query Array of Setup Parameters AcqrsD1_getSetupArray

Digitizer Control Functions
Query (on-board) Processing Status AcqrsD1_procDone
Start (on-board) Processing AcqrsD1_processData
Stop (on-board) Processing AcqrsD1_stopProcessing
Wait for End of (on-board) Processing AcqrsD1_waitForEndOfProcessing

Digitizer Utility Functions
Best Nominal Samples AcqrsD1_bestNominalSamples
Best Sampling Interval AcqrsD1_bestSampInterval
Version AcqrsD1_getVersion
Error Message AcqrsD1_errorMessage
Extended Error Message AcqrsD1_errorMessageEx
Reset (deprec.) AcqrsD1_reset
Reset Digitizer Memory AcqrsD1_resetDigitizerMemory
Restore Internal Registers AcqrsD1_restoreInternalRegisters
Set LED Color AcqrsD1_setLEDColor
Close all instruments (deprec.) AcqrsD1_closeAll
Programmer’s Reference Manual 17

2 Device Driver Function Reference

API Function descriptions
18
This section describes each function in the Device Driver. The functions appear in
alphabetical order.
Acqrs_calibrate

Purpose

Performs an auto-calibration of the instrument.

Parameters

Input

Return Value

Visual C++ Representation

Name Type Description
instrumentID ViSession Instrument identifier

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.
ViStatus status = Acqrs_calibrate(ViSession instrumentID);
LabVIEW Representation

Acqiris Bx.lvlib: (or Aq Bx) Calibrate Instrument.vi
MATLAB MEX Representation

[status]= Aq_calibrate(instrumentID)
Programmer’s Reference Manual

Device Driver Function Reference 2
Acqrs_calibrateCancel

Purpose

Interrupts a calibration of the instrument launched from a different thread.

Parameters

Input

Return Value

Visual C++ Representation

Name Type Description
instrumentID ViSession Instrument identifier

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.
Programmer’s Reference Manual
ViStatus status = Acqrs_calibrateCancel(ViSession instrumentID);

LabVIEW Representation

Acqiris Bx.lvlib: (or Aq Bx) Calibrate Cancel.vi
MATLAB MEX Representation

[status]= Aq_calibrateCancel(instrumentID)
19

2 Device Driver Function Reference

Acqrs_calibrateEx

Purpose

Performs a (partial) auto-calibration of the instrument.

Parameters

Input

Return Value

Discussion

Calling this function with calType = 0 is equivalent to calling Acqrs_calibrate.

Calibrating with calType = 1 reduces the calibration time in digitizers with many possible
channel combinations, e.g. the DC271. However, the user must keep track of which
channel combinations were calibrated, and request another such partial calibration
when changing the channel configuration with the function
AcqrsD1_configChannelCombination. This task can be facilitated by using
Acqrs_calRequired.

Calibrating with calType = 2 can only be done if the external input frequency is
appropriately high. See the discussion in the Programmer's Guide section 3.16.2,
External Clock (Continuous). If the calibration cannot be done an error code will be
returned. It is not applicable for AP240 Signal Analyzer Platforms.

Calibrating with calType = 3 is for 12-bit digitizers only and is needed to support the
HRes SR functionality. For best results it, or the longer full calibration, should be called
after a change of sampling rate.

Calibrating with calType = 4 can be used for all but the 12-bit-FAMILY models. A new
calibration should be done if the AcqrsD1_ configChannelCombination parameters or
any of the following AcqrsD1_configVertical parameters are changed: fullScale,
coupling (impedance), bandwidth, channel. This calibration will be much faster than the
calType = 0 case for models with more than one impedance setting. It will use the new
values that have been asked for.

Name Type Description
instrumentID ViSession Instrument identifier
calType ViInt32 = 0 calibrate the entire instrument.

= 1 calibrate only the current channel configuration.
= 2 calibrate external clock timing. Requires operation
 in External Clock (Continuous).
= 3 calibrate only at the current frequency
 (12-bit-FAMILY, only)
= 4 fast calibration for current settings only

modifier ViInt32 For calType = 0,1, or 2: Currently unused, set to “0”

For calType = 3 or 4, 0 = calibrate for all channels
 n = calibrate for channel "n"

flags ViInt32 Currently unused, set to “0”

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.
20
 Programmer’s Reference Manual

Device Driver Function Reference 2
Visual C++ Representation

ViStatus status = Acqrs_calibrate(ViSession instrumentID,
ViInt32 calType, ViInt32 modifier, ViInt32 flags);

LabVIEW Representation

Acqiris Bx.lvlib: (or Aq Bx) CalibrateEx Instrument.vi
Programmer’s Reference Manual
MATLAB MEX Representation

[status]= Aq_calibrateEx(instrumentID, calType, modifier, flags)

21

2 Device Driver Function Reference

Acqrs_calLoad

Purpose

Load calibration values from file. (For all but 12-bit-FAMILY modules).

Parameters

Input

Return Value

Discussion

Load calibration values from a binary file. The path or full filename can be specified, else
default values will be used (‘snXXXXX_calVal.bin’ file in the working directory).

The function can return the following error codes:

Name Type Description
instrumentID ViSession Instrument identifier
filePathName ViConstString File path and file name
flags ViInt32 Flags, may be:

0 = default filename. Calibration values will be loaded
from the ‘snXXXXX_calVal.bin’ file in the working
directory. ‘filePathName’ MUST be NULL or “” (empty
String).

1 = specify path only. Calibration values will be loaded
from the ‘snXXXXX_calVal.bin’ file in the specified
directory. ‘filePathName’ MUST be non-NULL.

2 = specify filename. ‘filePathName’ represents the
filename (with or without path) and MUST be
non-NULL and non-empty.

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.
22
• ACQIRIS_ERROR_FILE_CORRUPTED if the file is corrupted

• ACQIRIS_ERROR_FILE_VERSION if the file has been generated with a
driver version different than the used one (major and minor).

• ACQIRIS_ERROR_FILE_SERIAL if the file does not correspond to the
instrument or an AS bus multi-instrument has changed.
Programmer’s Reference Manual

Device Driver Function Reference 2
Visual C++ Representation

ViStatus status = Acqrs_calLoad(ViSession instrumentID,
ViConstString filePathName, ViInt32 flags);

LabVIEW Representation

Acqiris Bx.lvlib: (or Aq Bx) Calibration Load Instrument.vi
Programmer’s Reference Manual

MATLAB MEX Representation

[status]= Aq_calLoad(instrumentID, filePathName, flags)
23

2 Device Driver Function Reference

Acqrs_calRequired

Purpose

Check if a self calibration is needed. (For all but 12-bit-FAMILY modules).

Parameters

Input

Output

Return Value

Discussion

Query about the necessity of self calibration.

The value channel = 0 can be used to do the query on all channels simultaneously.

A calibration is needed for channel, channel > 0, if one or more of the 3 following
condition is true:

Name Type Description
instrumentID ViSession Instrument identifier
channel ViInt32 Channel number [0,1… Nchan]

Name Type Description
isRequiredP ViBoolean = VI_TRUE if a calibration on channel chan is needed

 VI_FALSE otherwise

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.
24
• The channel channel of the instrument has never been calibrated for
the desired acquisition conditions.

• It has been calibrated more than 2 hours ago.

• The instrument temperature since the last calibration has changed by
more than 5°C.
Programmer’s Reference Manual

Device Driver Function Reference 2
Visual C++ Representation
Programmer’s Reference Manual
ViStatus status = Acqrs_calRequired(ViSession instrumentID, ViInt32 channel,
ViBoolean* isRequiredP);

LabVIEW Representation

Acqiris Bx.lvlib: (or Aq Bx) Query Calibration Required.vi

MATLAB MEX Representation

[status isRequired] = Aq_calRequired(instrumentID, channel)
25

2 Device Driver Function Reference

Acqrs_calSave

Purpose

Save all calibration values in a binary file. (For all but 12-bit-FAMILY modules).

Parameters

Input

Return Value

Discussion

Write calibration values in a binary file. The path or full filename can be specified, else
default values will be used (‘snXXXXX_calVal.bin’ file in the working directory).

NOTE: If the file already exists, it will be overwritten.

Name Type Description
instrumentID ViSession Instrument identifier
filePathName ViConstString File path and file name
flags ViInt32 Flags, may be:

0 = default filename. Calibration values will be loaded
from the ‘snXXXXX_calVal.bin’ file in the working
directory. ‘filePathName’ MUST be NULL or “” (empty
String).

1 = specify path only. Calibration values will be loaded
from the ‘snXXXXX_calVal.bin’ file in the specified
directory. ‘filePathName’ MUST be non-NULL.

2 = specify filename. ‘filePathName’ represents the
filename (with or without path) and MUST be
non-NULL and non-empty.

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.
26 Programmer’s Reference Manual

Device Driver Function Reference 2
Visual C++ Representation

ViStatus status = Acqrs_calSave(ViSession instrumentID,
ViConstString filePathName, ViInt32 flags);

LabVIEW Representation

Acqiris Bx.lvlib: (or Aq Bx) Calibration Save.vi
Programmer’s Reference Manual
MATLAB MEX Representation

[status]= Aq_calSave(instrumentID, filePathName, flags)

27

2 Device Driver Function Reference

Acqrs_close

Purpose

Closes an instrument.

Parameters

Input

Return Value

Discussion

Close the specified instrument. Once closed, this instrument is not available anymore
and needs to be reenabled using Acqrs_InitWithOptions or Acqrs_init. 10-bit-FAMILY
digitizers will have their power consumption lowered. Appropriate warm-up time may be
needed when they are used again.

For freeing properly all resources, Acqrs_closeAll must still be called when the
application closes, even if Acqrs_close was called for each instrument.

Visual C++ Representation

ViStatus status = Acqrs_close(ViSession instrumentID);

LabVIEW Representation

Acqiris Bx.lvlib: (or Aq Bx) Close.vi

Name Type Description
instrumentID ViSession Instrument identifier

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.
28
MATLAB MEX Representation

[status]= Aq_close(instrumentID)
Programmer’s Reference Manual

Device Driver Function Reference 2
Acqrs_closeAll

Purpose

Closes all instruments in preparation for closing the application.

Return Value

Discussion

This function should be the last call to the driver, before closing an application. Make
sure to stop all instruments beforehand. 10-bit-FAMILY digitizers will have their power
consumption lowered. Appropriate warm-up time may be needed when they are used
again.

If this function is not called, closing the application might crash the computer in some
situations, particularly in multi-threaded applications.

Visual C++ Representation

ViStatus status = Acqrs_closeAll(void);

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.
Programmer’s Reference Manual

LabVIEW Representation

Acqiris Bx.lvlib: (or Aq Bx) Close All Instruments.vi
MATLAB MEX Representation

[status]= Aq_closeAll()
29

2 Device Driver Function Reference

Acqrs_configLogicDevice

Purpose

Configures (programs) on-board logic devices, such as user-programmable FPGA’s.

NOTE: With the exception of AC and SC Analyzers, this function now needs to be used
only by VxWorks users to specify the filePath for FPGA .bit files. Otherwise it should no
longer have to be used

Parameters

Input

Return Value

Discussion

With flags = 2 in VxWorks systems, the filePathName must point to a directory
containing the FPGA configuration files with extension ‘.bit’

With flags = 0 or 3, the filePathName must point to an FPGA configuration file with
extension ‘.bit’, e.g. “D:\Averagers\FPGA\AP100DefaultFPGA1.bit”.

For more details on programming on-board logic devices, please refer to the
Programmer’s Guide sections 3.2, Device Initialization and 3.3, Device Configuration.

Name Type Description
instrumentID ViSession Instrument identifier
deviceName ViChar [] Identifies which device to program

For the AC210/AC240 and SC210/SC240 modules
this string must be "Block1Dev1". Alternatively it
can be "ASBUS::n::Block1Dev1" with n ranging from
0 to the number of modules -1.
When clearing the FPGA’s, the string must be
"Block1DevAll".

filePathName ViChar [] File path and file name
flags ViInt32 flags, may be:

0 = program logic device with data in the file
 “filePathName”
1 = clear the logic device

2 = set path where FPGA .bit files can be found

3 = 0 + use normal search order with
AgMD1Fundamental.ini file

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.
30 Programmer’s Reference Manual

Device Driver Function Reference 2
Visual C++ Representation

ViStatus status = Acqrs_configLogicDevice(ViSession instrumentID,
ViChar deviceName[], ViChar filePathName[], ViInt32 flags);

LabVIEW Representation

Acqiris Bx.lvlib: (or Aq Bx) Configure Logic Device.vi
Programmer’s Reference Manual

MATLAB MEX Representation

[status]= Aq_configLogicDevice(instrumentID, deviceName, filePathName, flags)
31

2 Device Driver Function Reference

Acqrs_errorMessage

Purpose

Translates an error code into a human readable form.

Parameters

Input

Output

Return Value

Discussion

This function should be called immediately after the return of the error status to ensure
that the additional information remains available. For file errors, the returned message
will contain the file name and the original 'ansi' error string. This is particularly useful
for calls to the following functions:

Name Type Description
instrumentID ViSession Instrument identifier can be VI_NULL
errorCode ViStatus Error code (returned by a function) to be translated
errorMessageSize ViInt32 Size of the errorMessage character buffer in bytes

(suggested size 512)

Name Type Description
errorMessage ViChar [] Pointer to user-allocated string (suggested size 512)

into which the error-message text is returned

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Acqrs_calibrate Acqrs_calibrateEx
Acqrs_configLogicDevice Acqrs_configMode
Acqrs_init Acqrs_InitWithOptions
32 Programmer’s Reference Manual

Device Driver Function Reference 2
Visual C++ Representation

ViStatus status = Acqrs_errorMessage(ViSession instrumentID,
ViStatus errorCode, ViChar errorMessage[],ViInt32 errorMessageSize);

LabVIEW Representation

Acqiris Bx.lvlib: (or Aq Bx) Error Message.vi
Programmer’s Reference Manual

MATLAB MEX Representation

[status errorMessage]= Aq_errorMessage(instrumentID, errorCode)
33

2 Device Driver Function Reference

Acqrs_getDevType

Purpose

Returns the deviceType which indicates which family of the API functions can be used.

Parameters

Input

Output

Return Value

Visual C++ Representation

ViStatus status = Acqrs_getDevType(ViSession instrumentID,
ViInt32* devTypeP);

LabVIEW Representation

Acqiris Bx.lvlib: (or Aq Bx)Query Device Type.vi

Name Type Description
instrumentID ViSession Instrument identifier

Name Type Description
devTypeP ViInt32* Pointer to a device type (see AqDevType) with

1 = Digitizer (AcqrsD1)

2 = RC2xx Generator (AcqrsG2)

4 = TC Time-to-Digital Converter (AcqrsT3)

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.
34
MATLAB MEX Representation

[status devType]= Aq_getDevType(instrumentID)
Programmer’s Reference Manual

Device Driver Function Reference 2

Acqrs_getDevTypeByIndex

Purpose

Returns the deviceType which indicates which family of API functions can be used.

Parameters

Input

Output

Return Value

Visual C++ Representation

ViStatus status = Acqrs_getDevTypeByIndex(ViInt32 devIndex, ViInt32* devTypeP);

Name Type Description
devIndex ViInt32 Device Index (the integer part of the resource name

as used in Acqrs_initWithOptions. See the
Programmer’s Guide section 3.2.1)

Name Type Description
devTypeP ViInt32* Pointer to a device type (see AqDevType) with

1 = Digitizer (AcqrsD1)

2 = RC2xx Generator (AcqrsG2)

4 = TC Time-to-Digital Converter (AcqrsT3)

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.
Programmer’s Reference Manual
LabVIEW Representation

Acqiris Bx.lvlib: (or Aq Bx)Query Device Type By Index.vi



MATLAB MEX Representation

[status devType]= Aq_getDevType(devIndex)
35

2 Device Driver Function Reference

Acqrs_getInstrumentData

Purpose

Returns some basic data about a specified instrument.

Parameters

Input

Output

Return Value

Visual C++ Representation

ViStatus status = Acqrs_getInstrumentData(ViSession instrumentID,
ViChar name[], ViInt32*serialNbr,
ViInt32* busNbr, ViInt32* slotNbr);

LabVIEW Representation

Acqiris Bx.lvlib: (or Aq Bx) Query Instrument ID.vi

Name Type Description
instrumentID ViSession Instrument identifier

Name Type Description
name ViChar [] Pointer to user-allocated string, into which the model

name is returned (length < 32 characters).
serialNbr ViInt32 Serial number of the module.
busNbr ViInt32 Bus number of the module location.
slotNbr ViInt32 Slot number of the module location. (logical)

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.
36
MATLAB MEX Representation

[status name serialNbr busNbr slotNbr]= Aq_getInstrumentData(instrumentID)
Programmer’s Reference Manual

Device Driver Function Reference 2

).

m

Acqrs_getInstrumentInfo

Purpose

Returns general information about a specified instrument.

Parameters

Input

Output

Return Value

Accepted Parameter Strings

Name Type Description
instrumentID ViSession Instrument identifier
parameterString ViString Character string defining the requested parameter.

See below for the list of accepted strings.

Name Type Description
infoValue ViAddr Requested information value.

ViAddr resolves to void* in C/C++. The user must
allocate the appropriate variable type (as listed
below) and supply its address as 'infoValue'.

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Parameter String Returned
Type

Description

"ASBus_m_BusNb" ViInt32 Bus number of the m'th module of a multi-instrument. m
runs from 0 to (nbr of modules –1).

"ASBus_ m_IsMaster" ViInt32 Returns 1 if the m'th module of a multi-instrument is the
master, 0 otherwise. m runs from 0 to (nbr of modules –1

"ASBus_ m_PosInCrate" ViInt32 Physical slot number (position) in cPCI crate of the m 'th
module of a multi-instrument. m runs from 0 to (nbr of
modules –1).

"ASBus_ m_SerialNb" ViInt32 Serial number of the m'th module of a multi-instrument.
runs from 0 to (nbr of modules –1).

"ASBus_ m_SlotNb" ViInt32 Slot number of the m'th module of a multi-instrument. m
runs from 0 to (nbr of modules –1).

"CrateNb" ViInt32 Physical crate number (perhaps from AqGeo.map)
"DelayOffset" ViReal64 Calibrated Delay Offset

(only useful for recovery of battery backed-up
acquisitions)

"DelayScale" ViReal64 Calibrated Delay Scale
(only useful for recovery of battery backed-up
acquisitions)

"ExtCkRatio" ViReal64 Ratio of sFmax over external clock inputFrequency
"HasTrigVeto" ViInt32 Returns 1 if the functionality is available, 0 otherwise.
"IsPreTriggerRunning" ViInt32 Returns 1 if the module has an acquisition started but is

not yet ready to accept a trigger.
"LogDevDataLinks" ViInt32 Number of available data links for a streaming analyzer
"LOGDEVHDRBLOCKmDEVnS
string"

ViChar[] Returns information about FPGA firmware loaded. See
comments below.
Programmer’s Reference Manual 37

2 Device Driver Function Reference

s

in

h

a.

a.

Discussion

For the case "TrigLevelRange chan" the result is to be interpreted as ± (returned value),
which is in % of the vertical Full Scale of the channel, or in mV for an external trigger
source. The value of chan takes is the same as the values of 'channel' in
AcqrsD1_configTrigSource.

For the case "Temperature m", m is the module number in a MultiInstrument and runs
from 0 to (nbr of modules –1) following the channel order. It may be omitted on single
digitizers or for the master of a MultiInstrument

For the case "Options" the available options are returned in a ‘,’ separated string. The
options include the memory size if additional memory has been installed in the form
"MnM" for digitizers where n is the number of megabytes available or "PnMB" for
AP235/AP240 and "AnM" for AP100/AP101/AP200/AP201. Other possible options
include "NoASBus", "BtBkup", "FreqCntr", "SSR", "Avg", and "StrtOnTrig". The
infoValue should point to a string of at least 32 characters.

"MainFirmwareFullVersion" ViUInt32 get the full "firmware version" value of the loaded main
Firmware

"MainFirmwareFunction" ViUInt32 get the "firmware function" value, which identifies the
capabilities of the loaded main Firmware

"MaxSamplesPerChannel" ViInt32 Maximum number of samples per channel available in
digitizer mode

"NbrADCBits" ViInt32 Number of bits of data per sample from this modules
ADCs

"NbrExternalTriggers" ViInt32 Number of external trigger sources
"NbrInternalTriggers" ViInt32 Number of internal trigger sources
"NbrModulesInInstrument" ViInt32 Number of modules in this instrument. Individual module

(not connected through AS bus) return 1.
"Options" ViChar[] List of options, separated by ‘,’, installed in this

instrument.
"OverloadStatus chan" ViInt32 Returns 1 if chan is in overload, 0 otherwise. 

chan takes on the same values as 'channel' in
AcqrsD1_configTrigSource.

"OverloadStatus ALL" ViInt32 Returns 1 if any of the signal or external trigger inputs is
overload, 0 otherwise.
Use the "OverloadStatus chan " string to determine whic
channel is in overload.

"PosInCrate" ViInt32 Physical slot number (position) in cPCI crate
"SSRTimeStamp" ViReal64 Current value of time stamp for Analyzers in SSR mode.
"TbNextSegmentPad" ViInt32 Returns the additional array space (in samples) per

segment needed for the image read of AcqrsD1_readDat
It concerns the data available after the next call to
AcqrsD1_acquire, as opposed to any current or past
acquisition with different conditions.

"TbSegmentPad" ViInt32 Returns the additional array space (in samples) per
segment needed for the image read of AcqrsD1_readDat
It concerns the current data available, as opposed to any
future acquisition with different conditions.

"Temperature m" ViInt32 Temperature in degrees Centigrade (oC)
"TrigLevelRange chan" ViReal64 Trigger Level Range on channel chan
“VersionUserDriver” ViChar[] String containing the full driver version.
38 Programmer’s Reference Manual

Device Driver Function Reference 2

The case of "LOGDEVHDRBLOCKmDEVnS string" is one in which several possible
values of m, n, and string are allowed. The single digit number m refers to the FPGA
block in the module. For the moment this must always have the value 1. The single digit
number n refers to the FPGA device in the block. It can have values in the range 1,2,3,4
depending on the module. Among the interesting values of string are the following
case-sensitive strings: "name", "version", "versionTxt", "compDate", "model".

The case of "SSRTimeStamp" should only be used when data is readable. In other words, it
should only be used between the moment at which the processing is done and the moment when
AcqrsD1_processData is called to enable the subsequent bank switch. .

Visual C++ Representation

ViStatus status = Acqrs_getInstrumentInfo(ViSession instrumentID, ViString parameterString,
ViAddr infoValue);

LabVIEW Representation

Acqiris Bx.: (or Aq Bx) Query Instrument Information.vi



NOTE: The type of the returned value depends on the parameter requested. In LabVIEW,
the correct returned type should be supplied as input to the VI, and the appropriate
output wire connected. Any other wire will always return zero.

MATLAB MEX Representation

[status infoValue] = Aq_getInstrumentInfo(instrumentID, parameterString, dataTypeString)
Allowed values of dataTypeString are ’integer’, ’double’, or ’string’
Programmer’s Reference Manual 39

2 Device Driver Function Reference

Acqrs_getNbrChannels

Purpose

Returns the number of channels on the specified module.

Parameters

Input

Output

Return Value

Visual C++ Representation

ViStatus status = Acqrs_getNbrChannels(ViSession instrumentID, ViInt32* nbrChannels);

LabVIEW Representation

Acqiris Bx.lvlib: (or Aq Bx) Query Number of Channels.vi

Name Type Description
instrumentID ViSession Instrument identifier

Name Type Description
nbrChannels ViInt32 Number of channels in the specified module

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.
40
MATLAB MEX Representation

[status nbrChannels] = Aq_getNbrChannels(instrumentID)
Programmer’s Reference Manual

Device Driver Function Reference 2
Acqrs_getNbrInstruments

Purpose

Returns the number of Acqiris instruments found on the computer.

Parameters

Output

Return Value

Discussion

In the case of multiple processes accessing the Agilent Acqiris instruments, this
function will return the number of currently available instruments. If an instrument has
already been initialized in another process, it will not be available unless it has been
suspended via a call to Acqrs_suspendControl.

You should refer to to the Programmer’s Guide section 3.2, Device Initialization, for a
detailed explanation on the initialization procedure.

Name Type Description
nbrInstruments ViInt32 Number of Acqiris instruments found on the

computer

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.
Programmer’s Reference Manual

Visual C++ Representation

ViStatus status = Acqrs_getNbrInstruments(ViInt32* nbrInstruments);

LabVIEW Representation

Acqiris Bx.lvlib: (or Aq Bx) Query Number of Instruments.vi
MATLAB MEX Representation

[status nbrInstruments]= Aq_getNbrInstruments()
41

2 Device Driver Function Reference

Acqrs_getVersion

Purpose

Returns version numbers associated with a specified instrument or current device
driver.

Parameters

Input

Output

Return Value

Discussion

For drivers, the version number is composed of 2 parts. The upper 2 bytes represent the
major version number, and the lower 2 bytes represent the minor version number.

Visual C++ Representation

ViStatus status = Acqrs_getVersion(ViSession instrumentID,
ViInt32 versionItem, ViInt32* version);

LabVIEW Representation

Acqiris Bx.lvlib: (or Aq Bx) Revision Query.vi

Name Type Description
instrumentID ViSession Instrument identifier
versionItem ViInt32 1 for version of Kernel-Mode Driver 

2 for version of EEPROM Common Section
3 for version of EEPROM Instrument Section
4 for version of CPLD firmware

Name Type Description
version ViInt32 version number of the requested item

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.
42
MATLAB MEX Representation

[status version] = Aq_getVersion(instrumentID, versionItem)
Programmer’s Reference Manual

Device Driver Function Reference 2

Acqrs_init

Purpose

Initializes an instrument.

Parameters

Input

Output

Return Value

Discussion

You should refer to the Programmer’s Guide section 3.2, Device Initialization, for a
detailed explanation on the initialization procedure.

The function returns the error code ACQIRIS_ERROR_INIT_STRING_INVALID when the
initialization string could not be interpreted.

Visual C++ Representation

ViStatus status = Acqrs_init(ViRsrc resourceName, ViBoolean IDQuery, ViBoolean resetDevice,
ViSession* instrumentID);

LabVIEW Representation

Acqiris Bx.lvlib: (or Aq Bx) Initialize.vi

Name Type Description
resourceName ViRsrc ASCII string which identifies the module to be

initialized. See discussion below.
IDQuery ViBoolean Currently ignored
resetDevice ViBoolean If set to 'TRUE', resets the module after initialization.

Name Type Description
instrumentID ViSession Instrument identifier

Name Type Description
Status ViStatus Refer to Table 2-1 for error codes.
Programmer’s Reference Manual
MATLAB MEX Representation

[status instrumentID] = Aq_init(instrumentID, IDQuery, resetDevice)
43

2 Device Driver Function Reference

Acqrs_InitWithOptions

Purpose

Initializes an instrument with options.

Parameters

Input

Output

Return Value

Discussion

You should refer to the Programmer’s Guide section 3.2, Device Initialization for a
detailed explanation on the initialization procedure.

The function returns the error code ACQIRIS_ERROR_INIT_STRING_INVALID when the
initialization string could not be interpreted.

Multiple options can be given; Separate the option=value pairs with ‘,’ characters.

Name Type Description
resourceName ViRsrc ASCII string which identifies the instrument to be

initialized. See below.
IDQuery ViBoolean Currently ignored
resetDevice ViBoolean If set to 'TRUE', resets the instrument after

initialization.
optionsString ViString ASCII string that specifies options.

Syntax: "optionName=bool" where bool is TRUE (1)
or FALSE (0).
Currently three options are supported:
”CAL”: do calibration at initialization (default 1)

"DMA": use scatter-gather DMA for data transfers
(default 1).

"simulate": initialize a simulated device (default 0).
NOTE: optionsString is case insensitive.

Name Type Description
instrumentID ViSession Instrument identifier

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.
44 Programmer’s Reference Manual

Device Driver Function Reference 2
Visual C++ Representation

ViStatus status = Acqrs_InitWithOptions(ViRsrc resourceName, ViBoolean IDQuery,
ViBoolean resetDevice, ViString optionsString, ViSession* instrumentID);

LabVIEW Representation

Acqiris Bx.lvlib: (or Aq Bx) Initialize with Options.vi
Programmer’s Reference Manual

MATLAB MEX Representation

[status instrumentID]= Aq_initWithOptions(resourceName, IDQuery, resetDevice, optionsString)
45

2 Device Driver Function Reference

Acqrs_logicDeviceIO

Purpose

Reads/writes a number of 32-bit data values from/to a user-defined register in on-board
logic devices, such as user-programmable FPGAs. It is useful for AC/SC Analyzers and
U1084A with the custom firmware option.

Parameters

Input

Return Value

Discussion

This function is only useful if the user programmed the on-board logic device (FPGA).

Typically, nbrValues is set to 1, but it may be larger if the logic device supports internal
address auto-incrementation. The following example reads the (32-bit) contents of
register 5 to reg5Value:

ViStatus status =Acqrs_logicDeviceIO(ID, "Block1Dev1", 5, 1, ®5Value, 0, 0);
Note that dataArray must always be supplied as an address, even when writing a single
value.

Name Type Description
instrumentID ViSession Instrument identifier
deviceName ViChar [] Identifies which device to read from or write to.

For the AC210/AC240 and SC210/SC240 modules
this string must be "Block1Dev1". Alternatively it
can be "ASBUS::n::Block1Dev1" with n ranging from
0 to the number of modules -1

registerID ViInt32 Register Number:
For AC210/AC240 and SC210/SC240 modules it can
be in the range 0 to 127
For U1084A it can be in the range 0 to 1023.

nbrValues ViInt32 Number of data values to read
dataArray ViInt32 [] User-supplied array of data values
readWrite ViInt32 Direction 0 = read from device, 1 = write to device
flags ViInt32 Currently unused, set to “0”

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.
46 Programmer’s Reference Manual

Device Driver Function Reference 2
Visual C++ Representation

ViStatus status = Acqrs_logicDeviceIO(ViSession instrumentID,
ViChar deviceName[], ViInt32 registerID,
ViInt32 nbrValues, ViInt32 dataArray[],
ViInt32 readWrite, ViInt32 flags);

LabVIEW Representation

Acqiris Bx.lvlib: (or Aq Bx) Logic Device IO.vi
Programmer’s Reference Manual

MATLAB MEX Representation

Because of the separation of input and output arguments in MATLAB two functions are
needed:

[status dataArray] = Aq_logicDeviceRead(instrumentID, deviceName, registerID, nbrValues,
modifier)

[status] = Aq_logicDeviceWrite(instrumentID, deviceName, registerID, nbrValues, dataArray,
modifier)
47

2 Device Driver Function Reference

Acqrs_powerSystem

Purpose

Forces all instruments to prepare entry into or return from the system power down state.

Parameters

Input

Return Value

Discussion

Typically, this function is called by a 'Power Aware' application, when it catches a
'system power down' event, such as 'hibernate'. 

If 'state == 0', it will suspend all other calling threads. If a thread is performing a long
operation which cannot be completed within milliseconds, such as 'calibrate', it will be
interrupted immediately and will get the status
'ACQIRIS_ERROR_OPERATION_INTERRUPTED'. Note that if an acquisition is still
running while Acqrs_powerSystem(0, 0) is called, it might be incomplete or corrupted. 
 
If 'state == 1', it will reenable the instruments at the same state as they were before
Acqrs_powerSystem(0, 0). Threads which were suspended will be resumed. However,
interrupted operations which returned an error
'ACQIRIS_ERROR_OPERATION_INTERRUPTED' have to be redone.

Visual C++ Representation

ViStatus status = Acqrs_powerSystem(ViInt32 state, ViInt32 flags);

LabVIEW Representation

There is no LabVIEW implementation of this function.

MATLAB MEX Representation

[status] = Aq_powerSystem(state, flags)

Name Type Description
state ViInt32 0 = 'AqPowerOff' of the AqPowerState enum

1 = 'AqPowerOn' of the AqPowerState enum
flags ViInt32 Currently unused, set to “0”

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.
48 Programmer’s Reference Manual

Device Driver Function Reference 2

Acqrs_reset

Purpose

Resets an instrument.

Parameters

Input

Return Value

Discussion

There is no known situation where this action is to be recommended.

Visual C++ Representation

ViStatus status = Acqrs_reset(ViSession instrumentID);

LabVIEW Representation

Acqiris Bx.lvlib: (or Aq Bx) Reset.vi

Name Type Description
instrumentID ViSession Instrument identifier

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.
Programmer’s Reference Manual
MATLAB MEX Representation

[status] = Aq_reset(instrumentID)
49

2 Device Driver Function Reference

Acqrs_resetMemory

Purpose

Resets the instrument’s memory to a known default state.

Parameters

Input

Return Value

Discussion

Each byte of the digitizer memory is overwritten sequentially with the values 0xaa, 0x55,
0x00 and 0xff. This functionality is mostly intended for use with battery backed-up
memories.

Visual C++ Representation

ViStatus status = Acqrs_resetMemory(ViSession instrumentID);

LabVIEW Representation

Acqiris Bx.lvlib: (or Aq Bx) Reset Memory.vi

Name Type Description
instrumentID ViSession Instrument identifier

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.
50
MATLAB MEX Representation

[status] = Aq_resetMemory(instrumentID)
Programmer’s Reference Manual

Device Driver Function Reference 2

Acqrs_resumeControl

Purpose

Resume the control of an instrument that was suspended (see Acqrs_suspendControl).

Parameters

Input

Return Value

Discussion

This function reacquires the driver lock of the instrument and allows calls to it from the
current process. The error code ACQIRIS_ERROR_DEVICE_ALREADY_OPEN is returned
when calling an instrument already locked by another process.

After successfully calling Acqrs_resumeControl, the module will be set to a default
hardware state. It will have no valid data and the timestamp will be set to 0. When the
next acquisition is started, the module will be configured with all of the unmodified
settings from before the Acqrs_suspendControl was invoked.

For modules on a VXI carrier, both modules must be accessed from the same process.
The controlling process can be changed, but only for both modules together, i.e. both
modules must be suspended, and access resumed in the same process.

Visual C++ Representation

ViStatus status = Acqrs_resumeControl(ViSession instrumentID);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Resume Control.vi

Name Type Description
instrumentID ViSession Instrument identifier

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.
Programmer’s Reference Manual
MATLAB MEX Representation

[status] = Aq_resumeControl(instrumentID
51

2 Device Driver Function Reference

Acqrs_setAttributeString

Purpose

Sets an attribute with a string value (for use in SC Streaming Analyzers ONLY).

Parameters

Input

Return Value

Visual C++ Representation

ViStatus status = Acqrs_setAttributeString(ViSession instrumentID,
ViInt32 channel, ViConstString name,
ViConstString value);

LabVIEW Representation

Acqiris Bx.lvlib: (or Aq Bx) Set Attribute String.vi

Name Type Description
instrumentID ViSession Instrument identifier
channel ViInt32 1...Nchan
name ViConstString ASCII string that specifies options

“odlTxBitRate” is currently the only one used
value ViConstString For “odlTxBitRate” can have values like

“2.5G”,”2.125G”, or “1.0625G”

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.
52
MATLAB MEX Representation

[status] = Aq_setAttributeString (instrumentID, channel, name, value)
Programmer’s Reference Manual

Device Driver Function Reference 2

Acqrs_setLEDColor

Purpose

Sets the front panel LED to the desired color.

Parameters

Input

Return Value

Visual C++ Representation

ViStatus status = Acqrs_setLEDColor(ViSession instrumentID,
ViInt32 color);

LabVIEW Representation

Acqiris Bx.lvlib: (or Aq Bx) Set LED Color.vi

Name Type Description
instrumentID ViSession Instrument identifier
color ViInt32 0 = OFF (return to normal acquisition status indicator)

1 = Green

2 = Red

3 = Yellow

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.
Programmer’s Reference Manual
MATLAB MEX Representation

[status] = Aq_setLEDColor(instrumentID, color)
53

2 Device Driver Function Reference

Acqrs_setSimulationOptions

Purpose

Sets one or several options which will be used by the function Acqrs_InitWithOptions,
provided that the optionsString supplied with that function contains the string
"simulate=TRUE".

Parameters

Input

Return Value

Discussion

See the Programmer’s Guide section 3.2.10, Simulated Devices, for details on
simulation. A string of the form “M8M” is used to set an 8 Mbyte simulated memory.
The simulation options are reset to none by setting simOptionString to an empty string
"".

Visual C++ Representation

ViStatus status = Acqrs_setSimulationOptions(ViString simOptionString);

LabVIEW Representation

Use Acqiris Bx.lvlib: (or Aq Bx) Initialize with Options.vi

MATLAB MEX Representation

[status] = Aq_setSimulationOptions(simOptionsString)

Name Type Description
simOptionString ViString String listing the desired simulation options. See

discussion below.

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.
54 Programmer’s Reference Manual

Device Driver Function Reference 2

Acqrs_suspendControl

Purpose

Suspend control of an instrument to allow using it from another process. 
NOTE: This is only available for Windows and Linux operating systems.

Parameters

Input

Return Value

Discussion

This function releases the driver lock of the instrument and prevents all further calls
from the current process. The error code ACQIRIS_ERROR_INVALID_HANDLE is
returned when calling functions on a suspended instrument. Use Acqrs_resumeControl
to reacquire the control of the instrument.

Once suspended, this instrument can be used from another process. However, if this is
the first time this other process is used, all desired acquisition settings must be defined
and a calibration will be needed.

For modules on a VXI carrier, both modules must be accessed from the same process.
The controlling process can be changed, but only for both modules together, i.e. both
modules must be suspended, and access resumed in the same process.

Visual C++ Representation

ViStatus status = Acqrs_suspendControl(ViSession instrumentID);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Suspend Control.vi

Name Type Description
instrumentID ViSession Instrument identifier

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.
Programmer’s Reference Manual
MATLAB MEX Representation

[status] = Aq_suspendControl(instrumentID)
55

2 Device Driver Function Reference

56 Programmer’s Reference Manual

Device Driver Function Reference 2

AcqrsD1_acqDone

Purpose

Checks if the acquisition has terminated.

Parameters

Input

Output

Return Value

Visual C++ Representation

ViStatus status = AcqrsD1_acqDone(ViSession instrumentID,
ViBoolean* done);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Query Acquisition Status.vi

Name Type Description
instrumentID ViSession Instrument identifier

Name Type Description
done ViBoolean done = VI_TRUE if the acquisition is terminated

 VI_FALSE otherwise

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.
Programmer’s Reference Manual
MATLAB MEX Representation

[status done]= AqD1_acqDone(instrumentID)
Note: The older form Aq_acqDone is deprecated.

Please convert to the newer version.
57

2 Device Driver Function Reference

AcqrsD1_acquire

Purpose

Starts an acquisition.

Parameters

Input

Return Value

Visual C++ Representation

ViStatus status = AcqrsD1_acquire(ViSession instrumentID);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Start Acquisition.vi

Name Type Description
instrumentID ViSession Instrument identifier

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.
58
MATLAB MEX Representation

[status]= AqD1_acquire(instrumentID)
Note: The older form Aq_acquire is deprecated.

Please convert to the newer version.
Programmer’s Reference Manual

Device Driver Function Reference 2

AcqrsD1_acquireEx

Purpose

Starts an acquisition.

Parameters

Input

Return Value

Visual C++ Representation

ViStatus status = AcqrsD1_acquireEx(ViSession instrumentID ,
ViInt32 acquireMode, ViInt32 acquireFlags, ViInt32 acquireParams,
ViInt32 reserved);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Start Acquisition.vi

MATLAB MEX Representation

[status]= AqD1_acquireEx(instrumentID, acquireMode, acquireFlags, acquireParams, reserved)
Note: The older form Aq_acquireEx is deprecated. Please convert to the newer version.

Name Type Description
instrumentID ViSession Instrument identifier
acquireMode ViInt32 = 0, normal

= 2, continue to accumulate (AP Averagers only)
acquireFlags ViInt32 = 0, normal

= 4, resets the time stamp counter (AP240 PeakTDC,
U1071A10-bit-Family and U1084A only)

acquireParams ViInt32 Parameters, currently not used
reserved ViInt32 Currently not used

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.
Programmer’s Reference Manual 59

2 Device Driver Function Reference

AcqrsD1_bestNominalSamples

Purpose

Helper function to simplify digitizer configuration. It returns the maximum nominal
number of samples that fit into the available memory.

Parameters

Input

Output

Return Value

Discussion

When using this method, make sure to use AcqrsD1_configHorizontal and
AcqrsD1_configMemory beforehand to set the sampling rate and the number of
segments to the desired values (nbrSamples inAcqrsD1_configMemory may be any
number!). AcqrsD1_bestNominalSamples depends on these variables.

Visual C++ Representation

ViStatus status = AcqrsD1_bestNominalSamples(ViSession instrumentID,
ViInt32* nomSamples);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Query Best Nominal Samples.vi

Name Type Description
instrumentID ViSession Instrument identifier

Name Type Description
nomSamples ViInt32 Maximum number of data samples available

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.
60
MATLAB MEX Representation

[status nomSamples]= AqD1_bestNominalSamples(instrumentID)
Note: The older form Aq_bestNominalSamples is deprecated.

Please convert to the newer version.
Programmer’s Reference Manual

Device Driver Function Reference 2

AcqrsD1_bestSampInterval

Purpose

Helper function to simplify digitizer configuration. It returns the best possible sampling
rate for an acquisition, which covers the timeWindow with no more than maxSamples.
The calculation takes into account the requested state of the instrument, in particular
the requested number of segments. In addition, this routine returns the "real" nominal
number of samples that can be accommodated (it is computed as
timeWindow/samplingInterval!).

Parameters

Input

Output

Return Value

Discussion

The function returns the value status = ACQIRIS_ERROR_SETUP_NOT_AVAILABLE when
the available memory is too short, and the longest available sampling interval too short.
The returned sampling interval is the longest one possible. It returns VI_SUCCESS when
a good solution has been found.

NOTE: This function does not modify the state of the digitizer at all. It simply returns a
recommendation that the user is free to override.

NOTE: When using this method, make sure to use AcqrsD1_configMemory beforehand
to set the number of segments to the desired value (nbrSamples may be any number!).
AcqrsD1_bestSampInterval depends on this variable.

NOTE: The returned "recommended" values for the sampling interval sampInterval and
the nominal number of samples nomSamples are expected to be used for configuring
the instrument with calls to AcqrsD1_configMemory and AcqrsD1_configHorizontal.
Make sure to use the same number of segments in this second call to
AcqrsD1_configMemory, as in the first one.

Name Type Description
instrumentID ViSession Instrument identifier
maxSamples ViInt32 Maximum number of samples to be used
timeWindow ViReal64 Time window to be covered, in seconds

Name Type Description
sampInterval ViReal64 Recommended sampling interval in seconds
nomSamples ViInt32 Recommended number of data samples

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.
Programmer’s Reference Manual 61

2 Device Driver Function Reference

Visual C++ Representation

ViStatus status = AcqrsD1_bestSampInterval(ViSession instrumentID, ViInt32 maxSamples,
ViReal64 timeWindow, ViReal64* sampInterval, ViInt32* nomSamples);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Query Best Sampling Interval.vi
62
MATLAB MEX Representation

[status sampInterval nomSamples]= AqD1_bestSampInterval(instrumentID, maxSamples,
timeWindow)

Note: The older form Aq_bestSampInterval is deprecated.

Please convert to the newer version.
Programmer’s Reference Manual

Device Driver Function Reference 2

AcqrsD1_configAvgConfig

Purpose

Configures a parameter for averager/analyzer operation.

Parameters

Input

Return Value

Accepted Parameter Strings

Name Type Description
instrumentID ViSession Instrument identifier
channelNbr ViInt32 Channel number. A value = 0 will be treated as =1 for

compatibility.
parameterString ViString Character string defining the requested parameter. 

See below for the list of accepted strings.
value ViAddr Value to set. ViAddr resolves to void* in C/C++. The user

must allocate the appropriate variable type (as listed
below), set it to the requested value and supply its
address as 'value'.

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Parameter String Data Type Description
"DitherEnable" ViInt32 For U1084A Averagers ONLY.

0 = No dithering
1 = Dithering enabled

"DitherRange" ViInt32 For Averagers ONLY.

Range of offset dithering, in ADC LSB’s. May assume
values v = 0, 1…15 for AP units and 31 for U1084A units.
The offset is dithered over the range
 [-v, + v] in steps of ~1/8 LSB.

"FixedSamples" ViInt32 For Threshold Gate type in AP240/AP235 Analyzers and
AP240/AP235 PeakTDC ONLY.

Number of samples transmitted for each point over
threshold. It must be a multiple of 4. 0 = No limit imposed.

"GateType" ViInt32 For AP240/AP235 Analyzers and AP240/AP235 PeakTDC
ONLY.

0 = No Gates
1 = User Gates
2 = Threshold Gates

For PeakTDC a gate mode must be chosen.
"HistoTDCEnable" ViInt32 For AP240/AP235 Averagers ONLY.

0 = not enabled
1 = enable the simple TDC mode for the channel

“InterpEnable” ViInt32 For U1084A PeakTDC ONLY.

0 = No interpolation
1 = Interpolation enabled
Programmer’s Reference Manual 63

2 Device Driver Function Reference

"InvertData" ViInt32 0 = (no inversion)
1 = invert data, (1’s complement).

"NbrMaxGates" ViInt32 For Threshold Gate type in AP240/AP235 Analyzers and
AP240/AP235 PeakTDC ONLY.

Maximum number of gates allowed for each segment.
0 = No limit imposed

"NbrSamples" ViInt32 Number of data samples per waveform segment. May
assume quantized values as explained below.
For U1084A modules in Zero-Suppress mode, value must
be a multiple of 2048 in dual-channel mode or 4096 in
single-channel mode.

"NbrSegments" ViInt32 Number of waveform segments to acquire. May assume
values between 1 and 8192 in AP units and up to 131072
for U1084A units.

"NbrWaveforms" ViInt32 For Averagers and U1084A (Averager or PeakTDC) ONLY.

Number of waveforms to average before going to next
segment. May assume values between 1 and 65535 (64K –
1) in AP units and up to 16777216 for U1084A units.

"NbrRoundRobins" ViInt32 For AP240/AP235 Averagers and AP240/AP235 PeakTDC
ONLY.

Number of times to perform the full segment cycle during
data accumulation.

"NoiseBaseEnable" ViInt32 For Averagers andU1084A (Averager or PeakTDC) ONLY.

0 = no base subtraction
1 = base subtraction enabled. 
It can only be enabled if the threshold is enabled, except
for the U1084A PeakTDC , which does not support
threshold.

"NoiseBase" ViReal64 For Averagers and U1084A (Averager or PeakTDC) ONLY.

Value in Volts of the value to be added in Noise Supressed
Averaging.

“MarkerLatchMode” ViInt32 For AP240/AP235 Averagers ONLY.
Select on which trigger the Control IO markers are latched.

0= Old behavior on last trigger expect round robin (default)
1= Always on first trigger

“MaxSamplesPerSegment” ViInt32 The maximum number of actual data samples to be stored
per segment, after the zero-suppression is applied. Only
samples which are actually retained are counted. Any data
above this limit will be truncated.

"P1Control" ViInt32 0 = not enabled

 For AP240/AP235 Averagers ONLY.

1 = addSub channel 1
2 = addSub channel 2
3 = addSub channel 1 + 2
4 = average trigger enable
5 = start veto enable
6 = average (out)

For AP240/AP235 SSR ONLY.

1 = Timestamp reset enable
64 Programmer’s Reference Manual

Device Driver Function Reference 2

"P2Control" ViInt32 0 = not enabled

 For AP240/AP235 Averagers ONLY.

1 = addSub channel 1
2 = addSub channel 2
3 = addSub channel 1 + 2
4 = average trigger enable
5 = start veto enable
6 = average (out)

For AP240/AP235 SSR ONLY.

1 = Timestamp reset enable
"PostSamples" ViInt32 For AP240/AP235 SSR, U1084A and PeakTDC Analyzers

in Threshold Gate or Zero-Supress mode. Used to
guarantee a number of samples after the last one
satisfying the threshold condition.

The meaningful values are 0,4,8,12,16. Other values will be
rounded up or adapted appropriately.

"PreSamples" ViInt32 For AP240/AP235 SSR, U1084A and PeakTDC Analyzers
in Threshold Gate or Zero-Supress mode. Used to
guarantee a number of samples before the first one
satisfying the threshold condition.

The meaningful values are 0,4,8,12,16. Other values will
be rounded up or adapted appropriately.

"StartDelay" ViInt32 Start delay in samples.

For AP units, may assume values between 0 and
16777200(33554400) in steps of 16 (32) as explained
below. The limit is StepSize*(1024*1024-1).

For U1084A units, may assume values between 0 and
67108864(134217728) in steps of 16 (32) as explained
below. The limit is StepSize*(4*1024*1024).

"StartDeltaNegPeak" ViInt32 For AP101/AP201 Analyzers ONLY.

Negative excursion needed before searching for negative
peak.

"StartDeltaPosPeak" ViInt32 For AP101/AP201 Analyzers ONLY.

Positive excursion needed before searching for positive
peak. May assume values between 1 and 0xff.

"StartDeltaPosPeakV" ViReal64 For PeakTDC mode Analyzers ONLY.

Positive excursion needed before searching for positive
peak. Must be positive.

"StartVetoEnable" ViInt32 For AP100/AP200 Averagers ONLY

0 = for trigger enable functionality
1 = use high state of I/O signal to allow the average
accumulation to start.

Must be used in conjunction with
AcqrsD1_configControlIO.
Programmer’s Reference Manual 65

2 Device Driver Function Reference

"StopDelay " ViInt32 Stop delay in samples.

For AP units, may assume values between 0 and 1048560
(2097120) in steps of of 16 (32) as explained below. The
limit is StepSize*(64*1024-1).

For U1084A units, may assume values between 0 and
67108864 (134217728) in steps of of 16 (32) as explained
below. The limit is StepSize*(4*1024*1024)

“SyncOnTrigOutSync” ViInt32 For U1084A units ONLY.

0 = No resynchronisation of the acquisition
1 = Resynchronisation of the acquisition to the
 resynchronized trigger output

"TdcHistogramDepth" ViInt32 The depth of the histogram for AP240/AP235 PeakTDC
mode.

0 = 16-bit accumulation bins.
1 = 32-bit accumulation bins.

"TdcHistogramHorzRes" ViInt32 The horizontal resolution of the histogram for interpolated
peaks in the PeakTDC mode.

0 = each bin corresponds to a sampling interval.
n = each bin corresponds to ½**n of a sampling interval,
 n≤4

"TdcHistogramIncrement" ViInt32 The desired increment to be applied for each entry;

1 = increment by 1, for AP240/AP235 SimpleTDC
Averager and for all PeakTDC Analyzer modes ONLY.
2 = increment by the ADCvalue – NoiseBase
 for an AP240/AP235 SimpleTDC Averager 
 and by the ADCvalue for all PeakTDC Analyzer modes

"TdcHistogramMode" ViInt32 The type of histogram for AP240/AP235 PeakTDC mode
ONLY.

0 = no histogram. Data only is available for each
 acquisition.
1 = histogram.

"TdcHistogramVertRes" ViInt32 The vertical resolution of the histogram for interpolated
peaks when the TDCHistogramIncrement is 2 in the
PeakTDC mode.

0 = one LSB of the bin value corresponds to one LSB of
the ADC.
n = one LSB of the bin value corresponds to ½**n LSB of
the ADC, n≤4

"TdcMinTOT" ViInt32 For AP240/AP235 SimpleTDC mode ONLY.

The desired minimum width of a peak in the waveform;

It can take on a value (n) from 1 to 4. A peak is accepted if
there are at least n consecutive data samples above the
Threshold.

"TdcOverlaySegments" ViInt32 This option controls the horizontal binning of data in the
AP240/AP235 PeakTDC histogram mode.

0 = each segment will be histogrammed independently.
1 = all segments will be histogrammed on a common
 time axis.
66 Programmer’s Reference Manual

Device Driver Function Reference 2

"TdcProcessType" ViInt32 The desired processing for AP240/AP235 PeakTDC mode
peak finding. May assume

0 = No processing
1 = Standard peak finding (no interpolation)
2 = Interpolated peaks
3 = 8 sample peak regions for data readout
4 = 16 sample peak regions for data readout

"ThresholdEnable" ViInt32 For Averagers ONLY.

May assume 0 (no threshold) and 1 (threshold enabled).
"Threshold" ViReal64 Value in Volts of the threshold for Noise Supressed

Averaging or for AP240/AP235 SSR or AP240/AP235
PeakTDC with Threshold Gates.

"TimestampClock" ViInt32 For AP240/AP235 Averagers ONLY. Select the reference
source for the Timestamp clock:
0 = PCI 33MHz clock (default)
1 = Internal 10MHz Reference clock

"TrigAlways" ViInt32 May assume 0 (no trigger output) and 1 (trigger output
on), in the case of no acquisition.

"TriggerTimeout" ViInt32 For AP101/AP201 ONLY.

Trigger timeout in units of 30 ns in the range [0,232 - 1].

A value of 0 means that no trigger will be generated and
no Prepare for Trigger signal will be needed.

"TrigResync" ViInt32 For AP units ONLY.

May assume 0 (no resync), 1 (resync) and 2 (free run).
"ValidDeltaNegPeak" ViInt32 For AP101/AP201 ONLY.

Positive excursion needed to validate a negative peak.
May assume values between 1 and 0xff.

"ValidDeltaPosPeak" ViInt32 For AP101/AP201 ONLY.

Negative excursion needed to validate a positive peak.
May assume values between 1 and 0xff.

"ValidDeltaPosPeakV" ViReal64 For PeakTDC Analyzers ONLY.

Negative excursion needed to validate a positive peak.
Must be positive.
Programmer’s Reference Manual
 67

2 Device Driver Function Reference

Discussion

The channelNbr is used to designate the channel number for those parameters whose
values can be different for the two channels of an AP240/AP235 or a U1084A in
dual-channel mode. These parameters are indicated in bold in the list above.

The applicability of each Parameter String as a function of module is indicated as
needed. Averagers or PeakTDC Analyzers refers to all AP and U1084A modules with that
capability.

Set NbrWaveforms to 1 and NbrRoundRobins to n order to enable the round-robin
segment acquisition mode with n triggers for each segment.

The granularity for "NbrSamples", is 16 for the AP100/AP101 and the AP240/AP235 in
Dual-Channel mode, 32 for the AP200/AP201 and the AP240/AP235 in Single-Channel
mode, 256 for the U1084A in Dual-Channel mode, and 512 for the U1084A in
Single-Channel mode. The maximum values are limited as a function of the memory
option for the AP units. The U1084A maximum is 262144 samples in Dual-Channel mode
and 524288 samples in Single-Channel mode.

The granularity for "StartDelay" and "StopDelay" is 16 for the AP100/AP101 and the
AP240/AP235 or U1084A in Dual-Channel mode and 32 for the AP200/AP201 and the
AP240/AP235 or U1084A in Single-Channel mode.
68
If P1Control and/or P2Control are enabled for the Add/Subtract mode then the data will
be added if the signal, or the OR of both signals, is in the high state. The same rule holds
if they are used for trigger enable.

The P1Control/P2Control "average (out)" signal goes high after the first trigger is
accepted for an average and drops back down when the last trigger's acquition is
complete.
The "TrigResync" values 0 and 1 require a valid trigger, while 2 requires no trigger
(useful for background acquisition).
Example
long channelNbr = 0, dither = 8;

AcqrsD1_configAvgConfig(ID, channelNbr, "DitherRange", &dither);

This function sets the dithering range to  8 LSB’s.

Note that this function takes the address, not the value of the parameter
to be set.
Programmer’s Reference Manual

Device Driver Function Reference 2
Visual C++ Representation

ViStatus status = AcqrsD1_configAvgConfig(ViSession instrumentID,
ViInt32 channelNbr, ViString parameterString, ViAddr value);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Extended Configure Averager.vi

This Vi is polymorphic, the value can be either I32 or DBL.
Programmer’s Reference Manual

MATLAB MEX Representation

Note: Please see AqD1_configAvgConfigInt32 and AqD1_configAvgConfigReal64.
69

2 Device Driver Function Reference

AcqrsD1_configAvgConfigInt32

Purpose

Configures a long parameter for averager/analyzer operation.

Parameters

Input

Return Value

Accepted Parameter Strings

Name Type Description
instrumentID ViSession Instrument identifier
channelNbr ViInt32 Channel number. A value = 0 will be treated as =1 for

compatibility.
parameterString ViString Character string defining the requested parameter. 

See below for the list of accepted strings.
value ViInt32 Value to set.

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Parameter String Data Type Description
"DitherEnable" ViInt32 For U1084A Averagers ONLY.

0 = No dithering
1 = Dithering enabled

"DitherRange" ViInt32 Range of offset dithering, in ADC LSB’s. May assume
values v = 0, 1…15 for AP units and 31 for U1084A units.
The offset is dithered over the range
 [-v, + v] in steps of ~1/8 LSB. For Averagers ONLY.

"FixedSamples" ViInt32 For Threshold Gate type in AP240/AP235 Analyzers and
AP240/AP235 PeakTDC ONLY.

Number of samples transmitted for each point over
threshold. It must be a multiple of 4. 0 = No limit imposed.

"GateType" ViInt32 For AP240/AP235 Analyzers and AP240/AP235 PeakTDC
ONLY.

1 = User Gates
2 = Threshold Gates

"HistoTDCEnable" ViInt32 For AP240/AP235 Averagers ONLY.

0 = not enabled
1 = enable the simple TDC mode for the channel

“InterpEnable” ViInt32 For U1084A PeakTDC ONLY.

0 = No interpolation
1 = Interpolation enabled

"InvertData" ViInt32 0 = (no inversion)
1 = invert data, (1’s complement).

"NbrMaxGates" ViInt32 For Threshold Gate type in AP240/AP235 Analyzers and
AP240/AP235 PeakTDC ONLY.

Maximum number of gates allowed for each segment.
0 = No limit imposed
70 Programmer’s Reference Manual

Device Driver Function Reference 2

"NbrSamples" ViInt32 Number of data samples per waveform segment. May
assume values between 16 or 32 and the available
memory length, in multiples of 16 (32) as explained below.
For U1084A modules in Zero-Suppress mode, value must
be a multiple of 2048 in dual-channel mode or 4096 in
single-channel mode.

"NbrSegments" ViInt32 Number of waveform segments to acquire. May assume
values between 1 and 8192.

"NbrWaveforms" ViInt32 For Averagers and U1084A (Averager or PeakTDC) ONLY.

Number of waveforms to average before going to next
segment. May assume values between 1 and 65535 (64K –
1) in AP units and up to 16777216 for U1084A units.

"NbrRoundRobins" ViInt32 For AP240/AP235 Averagers and AP240/AP235 PeakTDC
ONLY.

Number of times to perform the full segment cycle during
data accumulation.

"NoiseBaseEnable" ViInt32 For Averagers and U1084A (Averager or PeakTDC) ONLY.

0 = no base subtraction
1 = base subtraction enabled. 
It can only be enabled if the threshold is enabled, except
for the U1084A PeakTDC , which does not support
threshold.

“MarkerLatchMode” ViInt32 For AP240/AP235 Averagers ONLY.
Select on which trigger the Control IO markers are latched.

0= Old behavior on last trigger expect round robin (default)
1= Always on first trigger

“MaxSamplesPerSegment” ViInt32 The maximum number of actual data samples to be stored
per segment, after the zero-suppression is applied. Only
samples which are actually retained are counted. Any data
above this limit will be truncated.

"P1Control" ViInt32 0 = not enabled

 For AP240/AP235 Averagers ONLY.

1 = addSub channel 1
2 = addSub channel 2
3 = addSub channel 1 + 2
4 = average trigger enable
5 = start veto enable
6 = average (out)

For AP240/AP235 SSR ONLY.

1 = Timestamp reset enable
"P2Control" ViInt32 0 = not enabled

 For AP240/AP235 Averagers ONLY.

1 = addSub channel 1
2 = addSub channel 2
3 = addSub channel 1 + 2
4 = average trigger enable
5 = start veto enable
6 = average (out)

For AP240/AP235 SSR ONLY.

1 = Timestamp reset enable
Programmer’s Reference Manual 71

2 Device Driver Function Reference

"PostSamples" ViInt32 For AP240/AP235 SSR, U1084A and PeakTDC Analyzers
in Threshold Gate or Zero-Supress (SSR) mode. Used to
guarantee a number of samples after the last one
satisfying the threshold condition.

The meaningful values are 0,4,8,12,16. Other values will be
rounded up or adapted appropriately.

"PreSamples" ViInt32 For AP240/AP235 SSR, U1084A and PeakTDC Analyzers
in Threshold Gate or Zero-Supress (SSR) mode. Used to
guarantee a number of samples before the first one
satisfying the threshold condition.

The meaningful values are 0,4,8,12,16. Other values will
be rounded up or adapted appropriately.

"StartDelay" ViInt32 Start delay in samples.

For AP units, may assume values between 0 and
16777200(33554400) in steps of 16 (32) as explained
below. The limit is StepSize*(1024*1024-1).

For U1084A units, may assume values between 0 and
67108864(134217728) in steps of 16 (32) as explained
below. The limit is StepSize*(4*1024*1024).

"StartDeltaNegPeak" ViInt32 For AP101/AP201 Analyzers ONLY.

Negative excursion needed before searching for negative
peak.

"StartDeltaPosPeak" ViInt32 For AP101/AP201 Analyzers ONLY.

Positive excursion needed before searching for positive
peak. May assume values between 1 and 0xff.

"StartVetoEnable" ViInt32 For AP100/AP200 Averagers ONLY

0 = for trigger enable functionality
1 = use high state of I/O signal to allow the average
accumulation to start.

Must be used in conjunction with
AcqrsD1_configControlIO.

"StopDelay " ViInt32 Stop delay in samples.

For AP units, may assume values between 0 and 1048560
(2097120) in steps of of 16 (32) as explained below. The
limit is StepSize*(64*1024-1).

For U1084A units, may assume values between 0 and
67108864 (134217728) in steps of of 16 (32) as explained
below. The limit is StepSize*(4*1024*1024)

“SyncOnTrigOutSync” ViInt32 For U1084A units ONLY.

0 = No resynchronisation of the acquisition
1 = Resynchronisation of the acquisition to the
 resynchronized trigger output

"TdcHistogramDepth" ViInt32 The depth of the histogram for PeakTDC mode.

0 = 16-bit accumulation bins.
1 = 32-bit accumulation bins.
72 Programmer’s Reference Manual

Device Driver Function Reference 2

"TdcHistogramHorzRes" ViInt32 The horizontal resolution of the histogram for interpolated
peaks in the PeakTDC mode.

0 = each bin corresponds to a sampling interval.
n = each bin corresponds to ½**n of a sampling interval,
 n≤4

"TdcHistogramIncrement" ViInt32 The desired increment to be applied for each entry;

1 = increment by 1, for SimpleTDC Averager and
 PeakTDC Analyzer modes ONLY.
2 = increment by the ADCvalue – NoiseBase
 for a SimpleTDC Averager 
 and by the ADCvalue for the PeakTDC Analyzer

"TdcHistogramMode" ViInt32 The type of histogram for PeakTDC mode ONLY.

0 = no histogram. Data only is available for each
 acquisition.
1 = histogram.

"TdcHistogramVertRes" ViInt32 The vertical resolution of the histogram for interpolated
peaks when the TDCHistogramIncrement is 2 in the
PeakTDC mode.

0 = one LSB of the bin value corresponds to one LSB of
the ADC.
n = one LSB of the bin value corresponds to ½**n LSB of
the ADC, n≤4

"TdcMinTOT" ViInt32 For SimpleTDC mode ONLY.

The desired minimum width of a peak in the waveform;

It can take on a value (n) from 1 to 4. A peak is accepted if
there are at least n consecutive data samples above the
Threshold.

"TdcOverlaySegments" ViInt32 This option controls the horizontal binning of data in the
PeakTDC histogram mode.

0 = each segment will be histogrammed independently.
1 = all segments will be histogrammed on a common
 time axis.

"TdcProcessType" ViInt32 The desired processing for PeakTDC mode peak finding.
May assume

0 = No processing
1 = Standard peak finding (no interpolation)
2 = Interpolated peaks
3 = 8 sample peak regions for data readout
4 = 16 sample peak regions for data readout

"ThresholdEnable" ViInt32 For Averagers ONLY.

May assume 0 (no threshold) and 1 (threshold enabled).
"TimestampClock" ViInt32 For Averagers ONLY.

Select the reference source for the Timestamp clock:
0 = PCI 33MHz clock (default)
1 = Internal 10MHz Reference clock

"TrigAlways" ViInt32 May assume 0 (no trigger output) and 1 (trigger output
on), in the case of no acquisition.
Programmer’s Reference Manual 73

2 Device Driver Function Reference

Discussion

The "TrigResync" values 0 and 1 require a valid trigger, while 2 requires no trigger
(useful for background acquisition).

Set NbrWaveforms to 1 and NbrRoundRobins to n order to enable the round-robin
segment acquisition mode with n triggers for each segment.

The channelNbr is used to designate the channel number for those parameters whose
values can be different for the two channels of an AP240/AP235 in dual-channel mode.
These parameters are indicated in bold in the list above.

The granularity for "NbrSamples","StartDelay", and "StopDelay" is 16 for the
AP100/AP101 and the AP240/AP235 in Dual-Channel mode and 32 for the
AP200/AP201 and the AP240/AP235 in Single-Channel mode.

"TriggerTimeout" ViInt32 For AP101/AP201 ONLY.

Trigger timeout in units of 30 ns in the range [0,232 - 1].

A value of 0 means that no trigger will be generated and
no Prepare for Trigger signal will be needed.

"TrigResync" ViInt32 May assume 0 (no resync), 1 (resync) and 2 (free run)
"ValidDeltaNegPeak" ViInt32 For AP101/AP201 ONLY.

Positive excursion needed to validate a negative peak.
May assume values between 1 and 0xff.

"ValidDeltaPosPeak" ViInt32 For AP101/AP201 ONLY.

Negative excursion needed to validate a positive peak.
May assume values between 1 and 0xff.
74
???
If P1Control and/or P2Control are enabled for the Add/Subtract mode then the data will
be added if the signal, or the OR of both signals, is in the high state. The same rule holds
if they are used for trigger enable.

The P1Control/P2Control "average (out)" signal goes high after the first trigger is
accepted for an average and drops back down when the last trigger's acquition is
complete.

Example
long channelNbr = 0, dither = 8;

AcqrsD1_configAvgConfigInt32(ID, channelNbr, "DitherRange", dither);
This function sets the dithering range to  8 LSB’s.

Note that this function takes value of the parameter to be set, not the the address.
Programmer’s Reference Manual

Device Driver Function Reference 2

Visual C++ Representation

ViStatus status = AcqrsD1_configAvgConfigInt32(ViSession instrumentID,
ViInt32 channelNbr, ViString parameterString,
ViInt32 value);

LabVIEW Representation

Please use the Acqiris Dx.lvlib: (or Aq Dx) Extended Configure Averager.vi described in
AcqrsD1_configAvgConfig.

MATLAB MEX Representation

[status]= AqD1_configAvgConfigInt32(instrumentID, channel, parameterString, value)
Programmer’s Reference Manual 75

2 Device Driver Function Reference

AcqrsD1_configAvgConfigReal64

Purpose

Configures a double parameter for averager/analyzer operation.

Parameters

Input

Return Value

Accepted Parameter Strings

Discussion

The channelNbr is used to designate the channel number for those parameters whose
values can be different for the two channels of an AP240/AP235 in dual-channel mode.
These parameters are indicated in bold in the list above.

Example

Name Type Description
instrumentID ViSession Instrument identifier
channelNbr ViInt32 Channel number. A value = 0 will be treated as =1 for

compatibility.
parameterString ViString Character string defining the requested parameter. 

See below for the list of accepted strings.
value ViReal64 Value to set.

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Parameter String Data Type Description
"NoiseBase" ViReal64 For Averagers and U1084A (Averager or PeakTDC) ONLY.

Value in Volts of the value to be added in Noise Supressed
Averaging.

"StartDeltaPosPeakV" ViReal64 For PeakTDC mode Analyzers ONLY.

Positive excursion needed before searching for positive
peak. Must be positive.

"Threshold" ViReal64 Value in Volts of the threshold for Noise Supressed
Averaging or for SSR or PeakTDC with Threshold Gates.

"ValidDeltaPosPeakV" ViReal64 For PeakTDC mode Analyzers ONLY.

Negative excursion needed to validate a positive peak.
Must be positive.
76
long channelNbr = 0;

double thresh = 0.8;

AcqrsD1_configAvgConfigReal64(ID, channelNbr, "DitherRange", thresh);
This function sets the NSA threshold to 0.8 V.

Note that this function takes the value of the parameter to be set, not the address.
Programmer’s Reference Manual

Device Driver Function Reference 2

Visual C++ Representation

ViStatus status = AcqrsD1_configAvgConfigReal64(ViSession instrumentID,
ViInt32 channelNbr, ViString parameterString,
ViReal64 value);

LabVIEW Representation

Please use the Acqiris Dx.lvlib: (or Aq Dx) Extended Configure Averager.vi described in
AcqrsD1_configAvgConfig.

MATLAB MEX Representation

[status]= AqD1_configAvgConfigReal64(instrumentID, channel, parameterString, value)
Programmer’s Reference Manual 77

2 Device Driver Function Reference

AcqrsD1_configChannelCombination

Purpose

Configures how many converters are to be used for which channels. This routine is for
use with some DC271-FAMILY instruments, the 10-bit-FAMILY, the U1071A-FAMILY, the
AC/SC240, the U1084A, and the AP240/AP235 Signal Analyzer platforms.

Parameters

Input

Return Value

Discussion

The acceptable values for 'usedChannels' depend on 'nbrConvertersPerChannel' and on
the number of available channels in the digitizer:

 A) If 'nbrConvertersPerChannel' = 1, 'usedChannels' must reflect the fact that ALL
channels are available for use. It accepts a single value for a given digitizer:

 'usedChannels' = 0x00000001 if the digitizer has 1 channel
 = 0x00000003 if the digitizer has 2 channels
 = 0x0000000f if the digitizer has 4 channels

 B) If 'nbrConvertersPerChannel' = 2, 'usedChannels' must reflect the fact that only half
of the channels may be used:

 'usedChannels'= 0x00000001 use channel 1 on a 2-channel digitizer
 = 0x00000002 use channel 2 on a 2-channel digitizer
 = 0x00000003 use channels 1+2 on a 4-channel digitizer
 = 0x00000005 use channels 1+3 on a 4-channel digitizer
 = 0x00000009 use channels 1+4 on a 4-channel digitizer
 = 0x00000006 use channels 2+3 on a 4-channel digitizer
 = 0x0000000a use channels 2+4 on a 4-channel digitizer
 = 0x0000000c use channels 3+4 on a 4-channel digitizer

Name Type Description
instrumentID ViSession Instrument identifier
nbrConvertersPerC
hannel

ViInt32 = 1 all channels use 1 converter each (default)
= 2 half of the channels use 2 converters each
= 4 1/4 of the channels use 4 converters each

usedChannels ViInt32 bit-field indicating which channels are used. See
discussion below

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.
78 Programmer’s Reference Manual

Device Driver Function Reference 2
 C) If 'nbrConvertersPerChannel' = 4, 'usedChannels' must reflect the fact that only 1 of
the channels may be used:

 'usedChannels'= 0x00000001 use channel 1 on a 4-channel digitizer
 = 0x00000002 use channel 2 on a 4-channel digitizer
 = 0x00000004 use channel 3 on a 4-channel digitizer
 = 0x00000008 use channel 4 on a 4-channel digitizer
Programmer’s Reference Manual

NOTE: Digitizers which don't support channel combination, always use the default
'nbrConvertersPerChannel' = 1, and the single possible value of 'usedChannels'

NOTE: Changing the channel combination doesn't change the names of the channels;
they are always the same.

NOTE: If digitizers are combined with AS bus, the channel combination applies equally
to all participating digitizers. The use of the word channel and the names shown apply to
each module of the multi-instrument.

Visual C++ Representation

ViStatus status = AcqrsD1_configChannelCombination(
ViSession instrumentID,
ViInt32 nbrConvertersPerChannel,
ViInt32 usedChannels);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Configure Channel Combination.vi
MATLAB MEX Representation

[status]= AqD1_configChannelCombination(instrumentID, nbrConvertersPerChannel,
usedChannels)

Note: The older form Aq_configChannelCombination is deprecated. 
Please convert to the newer version.
79

2 Device Driver Function Reference

AcqrsD1_configControlIO

Purpose

Configures a ControlIO connector. (For DC271-FAMILY/AP-FAMILY/12-bit-FAMILY/
U1071A-FAMILY/10-bit FAMILY/AC/SC and U1084A only)

Parameters

Input

Return Value

Name Type Description
instrumentID ViSession Instrument identifier
connector ViInt32 Connector Number

 1 = Front Panel I/O A (MMCX or MCX connector)
 2 = Front Panel I/O B (MMCX or MCX connector) 
 3 = Front Panel I/O C (MCX connector, if present)

 9 = Front Panel Trigger Out (MMCX or MCX
connector)

11 = PXI Bus 10 MHz (DC135/DC140/DC211/
 DC211A/DC241/DC241A/DC271/DC271A/
 DC271AR/DC122/DC152/DC222/DC252/
 DC282)

12 = PXI Bus Star Trigger (same models as above)
signal ViInt32 The accepted values depend on the type of connector

See the table below for details.
qualifier1 ViInt32 The accepted values depend on the type of connector

See the table below for details.
qualifier2 ViReal64 If trigger veto functionality is available (AP101/AP201

only), accepts values between 30 ns and 1.0 sec. The
trigger veto values given will be rounded off to steps
of 33 ns. A value of 0.0 means that no holdoff is
required and no Prepare for Trigger signal will be
needed.

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.
80 Programmer’s Reference Manual

Device Driver Function Reference 2

Accepted Values of signal vs. Connector Type

Connector Type Possible Values of signal and qualifierX
Front Panel I/O 0 = Disable

 Inputs:
 1 = Enable acquisition (for U1084A Averager & PeakTDC Only).
 2 = Skip to Next Segment. Forces a jump to the next segment
 without waiting for a trigger, under the following conditions:
 a) The digitizer is running and acquiring data for a segment,
 the pre-trigger acquisition is complete. b) The state of the
 I/O input is high (the input is not memorize, if it rises or falls
 outside the above condition it will have no effect). After a
 skip has occurred, if the I/O remains high then any
 subsequent segments will be skipped when the above
 condition occurs. (U1084A and DP214 only)
 6 = (Level) Enable trigger input (for Digitizers)
 If one of the two I/O connectors is set to this value then a
 high level must be present before an edge can be accepted.
 If both I/O connectors are set to this value, they both must
 be high before the trigger edge can be accepted.
 6 = (Level) Enable trigger input or Start Veto. (Only for
 U1081A-001(AP100) and U1081A-003 (AP200) Averagers)
 See AcqrsD1_configAvgConfig for more information.
 8 = Prepare for Trigger signal present on this connector.
 qualifier2 gives the desired holdoff in time. (Only for
 U1081A-002 / U1081A-004 Analyzers)
 9 = Gate signal for FC option totalize in gate functionality. (Only
 for U1061A)
15 = Start Veto (Only for U1084A Averager & PeakTDC).

 Outputs:
19 = (Clock) 10 MHz reference clock (only on I/O A for the
 U1084A Averager)

20 = (Pulse) Acquisition skips to next segment (in sequence
 acquisition mode) input (Not for AP240/AP235 Signal
 Analyzers nor U1084A Averager or PeakTDC).
21 = (Level) Acquisition is active

22 = (Level) Trigger is armed (ready) (Not available for the
 U1084A Averager or PeakTDC)

31 = Analyzer armed (for U1084A Averager & PeakTDC only).
 The values of qualifier1 and qualifier2 are not used

Front Panel Trigger Out The value of signal is interpreted as a signal offset in mV.
E.g. signal = -500 offsets the output signal by –500 mV. The
accepted range of signal is [-2500,2500], i.e. ± 2.5 V with a
resolution of ~20 mV.

The value of qualifier1 controls if the trigger output is
resynchronized to the clock or maintains a precise timing relation
to the trigger input.

qualifier1= 0 (default): Non-resynchronized
qualifier1= 1 : Resynchronized to sampling clock

PXI Bus 10 MHz 0 = Disable
1 = Enable
Replaces the internal 10 MHz reference clock with the 10 MHz
clock on the PXI rear panel connector.
Programmer’s Reference Manual 81

2 Device Driver Function Reference

Discussion

ControlIO connectors are front panel IO connectors for special purpose control functions
of the digitizer. Typical examples are user-controlled acquisition control
(start/stop/skip) or control output signals such as ‘acquisition ready’ or ‘trigger ready’.

The connector numbers are limited to the allowed values. To find out which connectors
are supported by a given module, use the query function AcqrsD1_getControlIO.

The variable signal specifies the (programmable) use of the specified connector.

In order to set I/O A as a ‘Enable Trigger’ input and the I/O B as a 10 MHz reference
output, use the function calls

PXI Bus Star Trigger 0 = Disable
1 = Use PXI Bus Star Trigger as Trigger Input
2 = Use PXI Bus Star Trigger for Trigger Output
Note: When using this connector as Trigger Input, you also must
 set the trigger source in sourcePattern in the function
 AcqrsD1_configTrigClass to External Trigger2!
82
 AcqrsD1_configControlIO(instrID, 1, 6, 0, 0.0);

 AcqrsD1_configControlIO(instrID, 2, 19, 0, 0.0);
In order to obtain a signal offset of +1.5 V on the Trigger Output, use the call
 AcqrsD1_configControlIO(instrID, 9, 1500, 0, 0.0);
Visual C++ Representation

ViStatus status = AcqrsD1_configControlIO(ViSession instrumentID, ViInt32 connector,
ViInt32 signal, ViInt32 qualifier1, ViReal64 qualifier2);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Configure Control IO Connectors.vi
MATLAB MEX Representation

[status]= AqD1_configControlIO(instrumentID, connector, signal, qualifier1, qualifier2)
Note: The older form Aq_configControlIO is deprecated. 
Please convert to the newer version.
Programmer’s Reference Manual

Device Driver Function Reference 2

AcqrsD1_configExtClock

Purpose

Configures the external clock of the digitizer.

Parameters

Input

Return Value

Discussion

When clockType is set to 1 or 4, the parameters of the function
AcqrsD1_configHorizontal are ignored! Please refer to your product User Manual, for
the conditions on the clock signals, and to the Programmer’s Guide section 3.16,
External Clock, for the setup parameters and the theory of operation.

Name Type Description
instrumentID ViSession Instrument identifier
clockType ViInt32 = 0 Internal Clock (default at start-up)

= 1 External Clock, continuously running

= 2 External Reference (10 MHz)

= 4 External Clock, with start/stop sequence
inputThreshold ViReal64 Input threshold for external clock or reference in mV
delayNbrSamples ViInt32 Number of samples to acquire after trigger (for

digitizers using 'clockType' = 1 only!)
inputFrequency ViReal64 The input frequency of the external clock, for

clockType = 1 only
sampFrequency ViReal64 The desired Sampling Frequency, for clockType = 1

only

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.
Programmer’s Reference Manual 83

2 Device Driver Function Reference

Visual C++ Representation

ViStatus status = AcqrsD1_configExtClock(ViSession instrumentID, ViInt32 clockType,
ViReal64 inputThreshold, ViInt32 delayNbrSamples,
ViReal64 inputFrequency, ViReal64 sampFrequency);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Configure External Clock.vi
84
MATLAB MEX Representation

[status]= AqD1_configExtClock(instrumentID, clockType, inputThreshold, delayNbrSamples,
inputFrequency, sampFrequency)
Note: The older form Aq_configExtClock is deprecated. 
Please convert to the newer version.
Programmer’s Reference Manual

Device Driver Function Reference 2

AcqrsD1_configFCounter

Purpose

Configures a frequency counter measurement

Parameters

Input

Return Value

Discussion

The Frequency mode (type = 0) measures the frequency of the signal applied to the
selected ‘signalChannel’ during the aperture time. The default value of ‘apertureTime’ is
0.001 sec and can be set to any value between 0.001 and 1000.0 seconds. A longer
aperture time may improve the measurement accuracy, if the (externally applied)
reference clock has a high accuracy and/or if the signal slew rate is low.The
‘targetValue’ is a user-supplied estimated of the expected result, and helps in choosing
the optimal measurement conditions. If the supplied value is < 1000.0, and > 0.0, then
the instrument will not use the HF trigger mode to divide the input frequency. Otherwise,
it divides it by 4 in order to obtain a larger frequency range.

The Period mode (type = 1) is similar to the frequency mode, but the function
AcqrsD1_readFCounter returns the inverse of the measured frequency. If the
‘targetValue’ is < 0.001 (1 ms), then the instrument will not use the HF trigger mode,
otherwise it does.

The Totalize by Time mode (type = 2) counts the number of pulses in the signal applied
to the selected ‘signalChannel’ during the time defined by ‘apertureTime’. The
‘targetValue’ is ignored.

The Totalize by Gate mode (type = 3) counts the number of pulses in the signal applied to
the selected ‘signalChannel’ during the time defined by signal at the I/O A or I/O B
inputs on the front panel. The gate is open while the signal is high, and closed while the
signal is low (if no signal is connected, counting will be enabled, since there is an
internal pull-up resistor). The gate may be opened/closed several times during the
measurement. The measurement must be terminated with the function
AcqrsD1_stopAcquisition.

Name Type Description
instrumentID ViSession Instrument identifier
signalChannel ViInt32 Signal input channel
type ViInt32 Type of measurement

= 0 Frequency (default)
= 1 Period (1/frequency)
= 2 Totalize by Time
= 3 Totalize by Gate

targetValue ViReal64 User-supplied estimate of the expected value, may be
0.0 if no estimate is available.

apertureTime ViReal64 Time in sec, during which the measurement is
executed, see discussion below.

reserved ViReal64 Currently ignored
flags ViInt32 Currently ignored

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.
Programmer’s Reference Manual 85

2 Device Driver Function Reference

Visual C++ Representation

ViStatus status = AcqrsD1_configFCounter(ViSession instrumentID,
ViInt32 signalChannel, ViInt32 type, ViReal64 targetValue,
ViReal64 apertureTime,ViReal64 reserved, ViInt32 flags);

LabVIEW Representation

AqDx Configure FCounter.vi
86
MATLAB MEX Representation

[status]= AqD1_configFCounter(instrumentID, signalChannel, typeMes, targetValue,
apertureTime, reserved, flags)
Note: The older form Aq_configFCounter is deprecated.

Please convert to the newer version.
Programmer’s Reference Manual

Device Driver Function Reference 2

AcqrsD1_configHorizontal

Purpose

Configures the horizontal control parameters of the digitizer.

Parameters

Input

Return Value

Discussion

Refer to the Programmer’s Guide section 3.12, Trigger Delay and Horizontal Waveform
Position, for a detailed discussion of the value delayTime.

Visual C++ Representation

ViStatus status = AcqrsD1_configHorizontal(ViSession instrumentID, ViReal64 sampInterval,
ViReal64 delayTime);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Configure Horizontal Settings.vi

Name Type Description
instrumentID ViSession Instrument identifier
sampInterval ViReal64 Sampling interval in seconds
delayTime ViReal64 Trigger delay time in seconds, with respect to the

beginning of the record. A positive number
corresponds to a trigger before the beginning of the
record (post-trigger recording). A negative number
corresponds to pre-trigger recording. It can’t be less
than -(sampInterval * nbrSamples), which
corresponds to 100% pre-trigger.

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.
Programmer’s Reference Manual
MATLAB MEX Representation

[status]= AqD1_configHorizontal(instrumentID, sampInterval, delayTime)
Note: The older form Aq_configHorizontal is deprecated.

Please convert to the newer version.
87

2 Device Driver Function Reference

AcqrsD1_configMemory

Purpose

Configures the memory control parameters of the digitizer.

Parameters

Input

Return Value

Visual C++ Representation

ViStatus status = AcqrsD1_configMemory(ViSession instrumentID,
ViInt32 nbrSamples, ViInt32 nbrSegments);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Configure Memory Settings.vi

Name Type Description
instrumentID ViSession Instrument identifier
nbrSamples ViInt32 Nominal number of samples to record (per segment!)
nbrSegments ViInt32 Number of segments to acquire. 1 corresponds to

the normal single-trace acquisition mode.

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.
88
MATLAB MEX Representation

[status]= AqD1_configMemory(instrumentID, nbrSamples, nbrSegments)
Note: The older form Aq_configMemory is deprecated. 
Please convert to the newer version.
Programmer’s Reference Manual

Device Driver Function Reference 2

AcqrsD1_configMemoryEx

Purpose

Extended configuration of the memory control parameters of the digitizer.

Parameters

Input

Return Value

Discussion

This routine is needed to access the new features of some of the digitizers.

The SAR mode should be activated by calling AcqrsD1_configMode with the
appropriate flags value. The desired number of banks should be set here with the
nbrBanks > 1. If the unit has external memory the flags parameter will also have to be
set to 1.

In an instrument equipped with external memory, flags = 1 will force the use of internal
memory which give a lower dead time between segments of a sequence acquisition.

Name Type Description
instrumentID ViSession Instrument identifier
nbrSamplesHi ViUInt32 Must be set to 0 (reserved for future use)
nbrSamplesLo ViUInt32 Nominal number of samples to record (per segment)
nbrSegments ViInt32 Number of segments to acquire. 1 corresponds to

the normal single-trace acquisition mode.
nbrBanks ViInt32 Number of banks to be used for SAR mode
flags ViInt32 = 0 default memory use

= 1 force use of internal memory (digitizers with
extended memory options only).

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.
Programmer’s Reference Manual 89

2 Device Driver Function Reference

Visual C++ Representation

ViStatus status = AcqrsD1_configMemoryEx(ViSession instrumentID,
ViUInt32 nbrSamplesHi, ViUInt32 nbrSamplesLo,
ViInt32 nbrSegments, ViInt32 nbrBanks,
ViInt32 flags);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Configure Extended Memory Settings.vi
90
MATLAB MEX Representation

[status]= AqD1_configMemoryEx(instrumentID, nbrSamplesHi, nbrSamplesLo,
nbrSegments, nbrBanks, flags)
Note: The older form Aq_configMemoryEx is deprecated. 
 Please convert to the newer version.
Programmer’s Reference Manual

Device Driver Function Reference 2

AcqrsD1_configMode

Purpose

Configures the operational mode of Averagers and Analyzers and certain special
Digitizer acquisition modes

Parameters

Input

Return Value

Note:

After switching operation modes an internal calibration should be performed to ensure that the
instrument is operating within specification.

Name Type Description
instrumentID ViSession Instrument identifier
mode ViInt32 0 = normal data acquisition

1 = AC/SC stream data to DPU
2 = averaging mode (only in real-time averagers)
3 = buffered data acquisition (only in AP101/AP201 
 analyzers) 
5 = PeakTDC mode for Analyzers with this
 option.
6 = frequency counter mode
7 = SSR mode (AP235/240)/ Zero-Suppress (U1084)
12 = DDC mode (M9202A)
14 = Custom firmware

modifier ViInt32 Currently not used, set to 0
flags ViInt32 If ‘mode’ = 0, this variable can take these values:

 0 = ‘normal’ (default value)
 1 = ‘Start on Trigger’ mode
 2 = ‘Sequence Wrap’ mode (all digitizers except
 U1071A-FAMILY and 10-bit-FAMILY)
 10 = SAR mode

For the U1084A Averager only, if ‘mode’ = 2, this
variable can take the following values:

 0 = ‘normal’ (default value)
 10 = dual bank SAR mode

For all other modules, this variable is not used if
‘mode’ = 2 (set to 0).

For AP101/AP201 units, if ‘mode’ = 3, this variable
can take these values:

 0 = acquire into 1st memory bank
 1 = acquire into 2nd memory bank

If ‘mode’ = 7, this flag must take the following
values:

 0 = for all AP family modules
 10 = for the U1084A module

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.
Programmer’s Reference Manual 91

2 Device Driver Function Reference

Discussion

Most digitizers only permit the default mode = 0. Real-time averagers support the
normal data acquisition mode (0) and the averager mode (2). The analyzers (digitizers
with buffered acquisition memory) (AP101/AP201 and AP235/AP240 with SSR) support
both the normal data acquisition mode (0) and the buffered mode (3). AC/SC analyzers
support both the normal data acquisition mode (0) and the stream data to DPU mode (1)

The normal data acquisition mode (0) supports the following submodes:
92
• flags = 0: normal digitizer mode

• flags = 1: ‘StartOnTrigger’ mode, whereby data recording only begins
after the receipt of a valid trigger. For details, see Programmer’s Guide
section 3.18, Special Operating Modes.

• flags = 2: ‘Sequence Wrap’ mode, whereby a multi-segment
acquisition (with ‘nbrSegments’ > 2, when configured with the
function AcqrsD1_configMemory), does not stop after ‘nbrSegments’,
but wraps around to zero, indefinitely. Thus, such acquisitions must be
stopped with the function AcqrsD1_stopAcquisition at the appropriate
moment. For details, see Programmer’s Guide section 3.18, Special
Operating Modes.

• flags = 10: SAR mode. This mode allows simultaneous data acquisition
and readout and is available on some models only.
AcqrsD1_configMemoryEx must be used to set the desired number of
banks. When SAR mode is active any external memory present is not
available.
The averaging mode (2) has the following differences from the default mode (0):
• The function AcqrsD1_acquire(): In mode 0, it starts a normal
waveform acquisition, whereas in mode 2, it makes the instrument run
as a real-time averager.

• The function AcqrsD1_readData() with dataType = ReadReal64: In
mode 0, it returns the last acquired waveform, whereas in mode 2, it
returns the averaged waveform (in Volts).
The buffered data acquisition mode (3) and the SSR mode (7) have the following
differences from the default mode (0):
• The function AcqrsD1_acquire(): In mode 0, it starts a normal
waveform acquisition, whereas in modes 3 or 7, it starts an acquisition
into the next memory bank or a special memory bank, as defined by
flags.

• The functions AcqrsD1_readData(): In mode 0, they return the last
acquired waveform from the normal acquisition memory, whereas in
mode 3, they return data from a memory bank (opposite to what is
defined by flags).
Programmer’s Reference Manual

Device Driver Function Reference 2
Visual C++ Representation

ViStatus status = AcqrsD1_configMode(ViSession instrumentID,
 ViInt32 mode, ViInt32 modifier, ViInt32 flags);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Configure Operation Mode.vi
Programmer’s Reference Manual
MATLAB MEX Representation

[status]= AqD1_configMode(instrumentID, mode, modifier, flags)
Note: The older form Aq_configMode is deprecated.

Please convert to the newer version.

93

2 Device Driver Function Reference

AcqrsD1_configMultiInput

Purpose

Selects the active input when there are multiple inputs on a channel. It is useful for
Averagers, Analyzers, and some digitizer models.

Parameters

Input

Return Value

Discussion

This function is only of use for instruments with an input-multiplexer (i.e. more than 1
input per digitizer, e.g. DP211). On the "normal" instruments with a single input per
channel, this function may be ignored.

Visual C++ Representation

ViStatus status = AcqrsD1_configMultiInput(ViSession instrumentID,
ViInt32 channel, ViInt32 input);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Configure Multiplexer Input.vi

MATLAB MEX Representation

[status]= AqD1_configMultiInput(instrumentID, channel, input)
Note: The older form Aq_configMultiInput is deprecated. 
 Please convert to the newer version.

Name Type Description
instrumentID ViSession Instrument identifier
channel ViInt32 1...Nchan
input ViInt32 = 0 set to input connection A

= 1 set to input connection B

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.
94
 Programmer’s Reference Manual

Device Driver Function Reference 2

AcqrsD1_configSetupArray

Purpose

Sets the configuration for an array of configuration values. It is useful for Analyzers only.

Parameters

Input

Return Value


GateParameters in AqGateParameters (If setupType = 0)


U1084AThresholds in AqThresholdGateParametersU1084A (If setupType = 2)

Discussion

The user has to take care to allocate sufficient memory for the setupData. nbrSetupObj
should not be higher than what the allocated setupData holds.

The SSR option allows up to 4095 gate definitions. The AP101/AP201 analyzers are
limited to 64 gate definitions. The U1084A analyser is limited to 128 gate definitions.

Note: The driver contains a set of 4095(64) default AqGateParameters, defined as {
{0,256} {256, 256} {512, 256} {768, 256} ... }.

Name Type Description
instrumentID ViSession Instrument identifier
channel ViInt32 1...Nchan
setupType ViInt32 Type of setup.

0 = GateParameters
2 = U1084A Thresholds

nbrSetupObj ViInt32 Number of setup objects in the array
setupData ViAddr Pointer to an array containing the setup objects 

ViAddr resolves to void* in C/C++. The user must
allocate the appropriate variable type and supply its
address as ‘setupData’.

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Name Type Description
GatePos ViInt32 Start position of the gate (must be multiple of 4)
GateLength ViInt32 Length of the gate (must be multiple of 4)

Name Type Description
threshold ViReal64 Threshold value to use in Volts.
nextThreshSample ViUInt32 The index of the sample in the segment, at which the

Zero-Suppression system should switch to the next
threshold in the array.

reseved ViInt32 Reserved field, must be 0.
Programmer’s Reference Manual 95

2 Device Driver Function Reference

Visual C++ Representation

ViStatus status = AcqrsD1_configSetupArray(ViSession instrumentID,
ViInt32 channel, ViInt32 setupType, ViInt32 nbrSetupObj,
ViAddr setupData);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Configure Setup Array.vi
96
MATLAB MEX Representation

[status]= AqD1_configSetupArray(instrumentID, channel, setupType, nbrSetupObj, setupData)
Note: The older form Aq_configSetupArray is deprecated.

Please convert to the newer version.
Programmer’s Reference Manual

Device Driver Function Reference 2

AcqrsD1_configTrigClass

Purpose

Configures the trigger class control parameters of the digitizer.

Parameters

Input

Return Value

Discussion

The number of internal (i.e. channel) or external trigger sources of the instrument can be
retrieved with the Acqrs_getInstrumentInfo function.

For more details on the trigger source pattern in AS bus-connected MultiInstruments,
please refer to the Programmer’s Guide section 3.17.2, Trigger Source Numbering with
AS bus.

For configuring the TV trigger see AcqrsD1_configTrigTV.

The U1071A-FAMILY OR, NOR, AND, and NAND patterns can be implemented as

sourcePattern = 0x800n0001for Channel 1 + External or
sourcePattern = 0x800n0002for Channel 2 + External.

The 10-bit family OR, NOR, AND, and NAND patterns can be implemented as

sourcePattern = 0x800n000 fwhere 8 can be either 8 or 0 and f can be any value
between 0 and f consistent with the number of channels available in a single module.

Name Type Description
instrumentID ViSession Instrument identifier
trigClass ViInt32 = 0 edge trigger

= 1 TV trigger (12-bit-FAMILY External only)
= 3 OR (10-bit & U1071A-FAMILIES)
= 4 NOR (10-bit & U1071A-FAMILIES)
= 5 AND (10-bit & U1071A-FAMILIES)
= 6 NAND (10-bit & U1071A-FAMILIES)

sourcePattern ViInt32 = 0x000n0001 for Channel 1,
= 0x000n0002 for Channel 2,
= 0x000n0004 for Channel 3,
= 0x000n0008 for Channel 4 etc.
= 0x800n0000 for External Trigger 1,
= 0x400n0000 for External Trigger 2 etc.
where n is 0 for single instruments, or the module
number for MultiInstruments (AS bus operation). See
discussion below.

validatePattern ViInt32 Currently unused, set to “0”
holdType ViInt32 Currently unused, set to “0”
holdoffTime ViReal64 Currently unused, set to “0.0”
reserved ViReal64 Currently unused, set to “0.0”

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.
Programmer’s Reference Manual 97

2 Device Driver Function Reference

Visual C++ Representation

ViStatus status = AcqrsD1_configTrigClass(ViSession instrumentID,
ViInt32 trigClass, ViInt32 sourcePattern,
ViInt32 validatePattern, ViInt32 holdType,
ViReal64 holdoffTime, ViReal64 reserved);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Configure Trigger Class.vi
98
MATLAB MEX Representation

[status]= AqD1_configTrigClass(instrumentID, trigClass, sourcePattern, validatePattern,
holdType, holdoffTime, reserved)
Note: The older form Aq_configTrigClass is deprecated.

Please convert to the newer version.
Programmer’s Reference Manual

Device Driver Function Reference 2

AcqrsD1_configTrigSource

Purpose

Configures the trigger source control parameters for the specified trigger source
(channel or External).

Parameters

Input

Return Value

Discussion

The number of internal (i.e. channel) or external trigger sources of the instrument can be
retrieved with the function Acqrs_getInstrumentInfo. See the Programmer’s Guide
section AS bus Operation for additional details on that case.

The allowed range for the trigger threshold depends on the model and the channel
chosen. See your product User Manual.

NOTE: Some of the possible states may be unavailable in some digitizers. In particular,
the trigCoupling choices of ‘DC, 50 ’ and ‘AC, 50 ’ are only needed for modules that
have both 50  and 1 M external input impedance possibilities.

Name Type Description
instrumentID ViSession Instrument identifier
channel ViInt32 = 1...(Number of IntTrigSources) for internal sources

= -1..-(Number of ExtTrigSources) for external sources
See discussion below.

trigCoupling ViInt32 = 0 DC
= 1 AC
= 2 HF Reject (if available)
= 3 DC, 50  (ext. trigger only, if available)
= 4 AC, 50  (ext. trigger only, if available)

trigSlope ViInt32 = 0 Positive
= 1 Negative

= 2 out of Window

= 3 into Window

= 4 HF divide

= 5 Spike Stretcher
trigLevel1 ViReal64 Trigger threshold in % of the vertical Full Scale of the

channel, or in mV if using an External trigger source.
See discussion below.

trigLevel2 ViReal64 Trigger threshold 2 (as above) for use when Window
trigger is selected

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.
Programmer’s Reference Manual 99

2 Device Driver Function Reference

Visual C++ Representation

ViStatus status = AcqrsD1_configTrigSource(ViSession instrumentID,
ViInt32 channel, ViInt32 trigCoupling,
ViInt32 trigSlope, ViReal64 trigLevel1, ViReal64 trigLevel2);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Configure Extended Trigger Source.vi
100
MATLAB MEX Representation

[status]= AqD1_configTrigSource(instrumentID, channel, trigCoupling, trigSlope,
trigLevel1, trigLevel2)
Note: The older form Aq_configTrigSource is deprecated.

Please convert to the newer version.
Programmer’s Reference Manual

Device Driver Function Reference 2

AcqrsD1_configTrigTV

Purpose

Configures the TV trigger parameters (12-bit-FAMILY only).

Parameters

Input

Return Value

Discussion

The number of internal (i.e. channel) or external trigger sources of the instrument can be
retrieved with the Acqrs_getInstrumentInfo function.

Name Type Description
instrumentID ViSession Instrument identifier
channel ViInt32 = -1..-(Number of ExtTrigSources) for external sources

See discussion below.
standard ViInt32 = 0 625/50/2:1 (PAL or SECAM)

= 2 525/60/2:1 (NTSC)
field ViInt32 = 1 Field 1 - odd

= 2 Field 2 - even
line ViInt32 = line number, depends on the parameters above:

For 'standard' = 625/50/2:1

= 1 to 313 for 'field' = 1
= 314 to 625 for 'field' = 2

For 'standard' = 525/60/2:1

= 1 to 263 for 'field' = 1
= 1 to 262 for 'field' = 2

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.
Programmer’s Reference Manual 101

2 Device Driver Function Reference

Visual C++ Representation

ViStatus status = AcqrsD1_configTrigTV (ViSession instrumentID, ViInt32 channel,
ViInt32 standard, ViInt32 field, ViInt32 line);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Configure Trigger TV.vi
102
MATLAB MEX Representation

[status]= AqD1_configTrigTV(instrumentID, channel, standard, field, line)
Note: The older form Aq_configMemoryEx is deprecated.

Please convert to the newer version.
Programmer’s Reference Manual

Device Driver Function Reference 2

AcqrsD1_configVertical

Purpose

Configures the vertical control parameters for a specified channel of the digitizer.

Parameters

Input

Return Value

Discussion

For the DC440 and DP310 the coupling input is used to select the signal input: DC, 50 
for the Standard input and AC, 50  for the Direct HF input.

Some instruments have no bandwidth limiting capability. In this case, use bandwidth =
0. With channel = -1 this function can be used to set the Full Scale Range and the
bandwidth limit of the external trigger for the DC271-FAMILY digitizers, the
10-bit-FAMILY, the AC/SC, and the AP240/AP235 signal analyzer platforms. For the
case of a 10-bit-FAMILY or DC271-FAMILY MultiInstrument using AS bus, the external
triggers of the additional modules are numbered –3, -5, … following the principles given
in the Programmer’s Guide section 3.17.2, Trigger Source Numbering with AS bus.

Name Type Description
instrumentID ViSession Instrument identifier
channel ViInt32 1...Nchan, or –1,… for the External Input
fullScale ViReal64 in Volts
offset ViReal64 in Volts
coupling ViInt32 = 0 Ground (Averagers ONLY)

= 1 DC, 1 MΩ
= 2 AC, 1 MΩ
= 3 DC, 50 Ω
= 4 AC, 50 Ω

bandwidth ViInt32 = 0 no bandwidth limit (default)
= 1 bandwidth limit at 25 MHz
= 2 bandwidth limit at 700 MHz
= 3 bandwidth limit at 200 MHz
= 4 bandwidth limit at 20 MHz
= 5 bandwidth limit at 35 MHz

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.
Programmer’s Reference Manual 103

2 Device Driver Function Reference

Visual C++ Representation

ViStatus status = AcqrsD1_configVertical(ViSession instrumentID,
ViInt32 channel,ViReal64 fullScale,
ViReal64 offset, ViInt32 coupling, ViInt32 bandwidth);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Configure Vertical Settings.vi
104
MATLAB MEX Representation

[status]= AqD1_configVertical(instrumentID, channel, fullScale, offset, coupling, bandwidth)
Note: The older form Aq_configVertical is deprecated.

Please convert to the newer version.
Programmer’s Reference Manual

Device Driver Function Reference 2

 AcqrsD1_errorMessage

Purpose

Translates an error code into a human readable form. The new function
Acqrs_errorMessage is to be preferred.

Parameters

Input

Output

Return Value

Discussion

There is no Matlab MEX implementation of this function.

Visual C++ Representation

ViStatus status = AcqrsD1_errorMessage(ViSession instrumentID, ViStatus errorCode,
ViChar errorMessage[]);

LabVIEW Representation

See Acqrs_errorMessage

Name Type Description
instrumentID ViSession Instrument identifier can be VI_NULL

errorCode ViStatus Error code (returned by a function) to be translated

Name Type Description

errorMessage ViChar [] Pointer to user-allocated string (suggested size 512)
into which the error-message text is returned

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.
Programmer’s Reference Manual 105

2 Device Driver Function Reference

AcqrsD1_errorMessageEx

Purpose

Translates an error code into a human readable form and returns associated information.
The new function Acqrs_errorMessage is to be preferred.

Parameters

Input

Output

Return Value

Discussion

This function should be called immediately after the return of the error status to ensure
that the additional information remains available. For file errors, the returned message
will contain the file name and the original 'ansi' error string. This is particularly useful
for calls to the following functions:

Visual C++ Representation

ViStatus status = AcqrsD1_errorMessageEx(ViSession instrumentID, ViStatus errorCode,
ViChar errorMessage[], ViInt32 errorMessageSize);

LabVIEW Representation

See Acqrs_errorMessage

MATLAB MEX Representation

[status errorMessage]= Aq_errorMessage(instrumentID, errorCode)

Name Type Description

instrumentID ViSession Instrument identifier can be VI_NULL
errorCode ViStatus Error code (returned by a function) to be translated
errorMessageSize ViInt32 Size of the errorMessage character buffer in bytes

 (suggested size 512)

Name Type Description

errorMessage ViChar [] Pointer to user-allocated string (suggested size 512)
into which the error-message text is returned

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Acqrs_calibrate Acqrs_calibrateEx
Acqrs_configLogicDevice AcqrsD1_configMode
Acqrs_init Acqrs_InitWithOptions
106 Programmer’s Reference Manual

Device Driver Function Reference 2

AcqrsD1_forceTrig

Purpose

Forces a manual trigger. It should not be used for rs or Analyzers.

Parameters

Input

Return Value

Discussion

The function returns immediately after ordering the acquisition to stop. One must
therefore wait until the acquisition has terminated before reading the data, by checking
the status with the function AcqrsD1_acqDone. If the external clock is enabled, and
there is no clock signal applied to the device, AcqrsD1_acqDone will never return 
done = VI_TRUE. Consider using a timeout and calling AcqrsD1_stopAcquisition if it
occurs. In multisegment mode, the current segment is acquired, the acquisition is
terminated and the data and timestamps of subsequent segments are invalid.

Visual C++ Representation

ViStatus status = AcqrsD1_forceTrig(ViSession instrumentID);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Software Trigger.vi

Name Type Description

instrumentID ViSession Instrument identifier

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.
Programmer’s Reference Manual
MATLAB MEX Representation

See AcqrsD1_forceTrigEx
107

2 Device Driver Function Reference

AcqrsD1_forceTrigEx

Purpose

Forces a manual trigger. It should not be used for rs or Analyzers.

Parameters

Input

Return Value

Discussion

The function returns immediately after ordering the acquisition to stop. One must
therefore wait until the acquisition has terminated before reading the data, by checking
the status with the function AcqrsD1_acqDone. If the external clock is enabled, and
there is no clock signal applied to the device, AcqrsD1_acqDone will never return 
done = VI_TRUE. Consider using a timeout and calling AcqrsD1_stopAcquisition if it
occurs.

For forceTrigType = 0, the 'trigOut' Control IO will NOT generate a trigger output. This
mode is equivalent to AcqrsD1_forceTrig. In multisegment mode, the current segment
is acquired, the acquisition is terminated and the data and timestamps of subsequent
segments are invalid.

For forceTrigType = 1, 'trigOut' Control IO will generate a trigger output on each
successful call. In multisegment mode, the acquisition advances to the next segment
and then waits again for a trigger. If no valid triggers are provided to the device, the
application must call AcqrsD1_forceTrigEx as many times as there are segments. Every
acquired segment will be valid. This mode is only supported for single (i.e. non-AS
bus-connected) digitizers (not rs or Analyzers).

Name Type Description

instrumentID ViSession Instrument identifier
forceTrigType ViInt32 = 0 Sends a software trigger to end the full

 acquisition
= 1 Sends a single software trigger and generates
 the TrigOut hardware signal

modifier ViInt32 Currently not used
flags ViInt32 Currently not used

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.
108 Programmer’s Reference Manual

Device Driver Function Reference 2
Visual C++ Representation

ViStatus status = AcqrsD1_forceTrigEx(ViSession instrumentID ,
ViInt32 forceTrigType, ViInt32 modifier, ViInt32 flags);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Software Trigger.vi
Programmer’s Reference Manual
MATLAB MEX Representation

[status]= AqD1_forceTrigEx(instrumentID, forceTrigType, modifier, flags)
Note: The older form Aq_forceTrigEx is deprecated.

Please convert to the newer version.

109

2 Device Driver Function Reference

AcqrsD1_freeBank

Purpose

Free current bank during SAR acquisitions.

Parameters

Input

Return Value

Discussion

Calling this function indicates to the driver that the current SAR bank has been read and
can be reused for a new acquisition. This call should be made after having read all
desired data for the bank.

Visual C++ Representation

ViStatus status = AcqrsD1_freeBank(ViSession instrumentID, ViInt32 reserved);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Free Bank.vi

Name Type Description

instrumentID ViSession Instrument identifier
reserved ViInt32 Reserved

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.
110
MATLAB MEX Representation

[status]= AqD1_freeBank(instrumentID, reserved)
Programmer’s Reference Manual

Device Driver Function Reference 2

AcqrsD1_getAvgConfig

Purpose

Returns an attribute from the analyzer/r configuration channelNbr.

Parameters

Input

Output

Return Value

Discussion

See remarks under AcqrsD1_configAvgConfig.

Name Type Description

instrumentID ViSession Instrument identifier
channelNbr ViInt32 Channel number. A value = 0 will be treated as =1

for compatibility.
parameterString ViString Character string defining the requested parameter. 

See AcqrsD1_configAvgConfigfor the list of
accepted strings.

Name Type Description

value ViAddr Requested information value.
ViAddr resolves to void* in C/C++. The user must
allocate the appropriate variable type (as listed
under AcqrsD1_configAvgConfig
) and supply its address as 'value'.

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.
Programmer’s Reference Manual 111

2 Device Driver Function Reference

Visual C++ Representation

ViStatus status = AcqrsD1_getAvgConfig(ViSession instrumentID,
ViInt32 channelNbr, ViString parameterString, ViAddr value);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Query Extended r Settings.vi
 This Vi returns the value as either I32 or DBL. Connect the desired type.
112
MATLAB MEX Representation

Please use the MEX representation associated with AcqrsD1_configAvgConfigInt32 or
 AcqrsD1_configAvgConfigReal64.

Note: The older form Aq_getAvgConfig is deprecated.

Please convert to the newer version.
Programmer’s Reference Manual

Device Driver Function Reference 2

AcqrsD1_getAvgConfigInt32

Purpose

Returns a long attribute from the analyzer/r configuration channelNbr.

Parameters

Input

Output

Return Value

Discussion

See remarks under AcqrsD1_configAvgConfigInt32.

Visual C++ Representation

ViStatus status = AcqrsD1_getAvgConfigInt32(ViSession instrumentID,
ViInt32 channelNbr, ViString parameterString, ViInt32 *value);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Query Extended r Settings.vi
 This Vi returns the value as either I32 or DBL. Connect the desired type.

Name Type Description

instrumentID ViSession Instrument identifier
channelNbr ViInt32 Channel number. A value = 0 will be treated as =1

for compatibility.
parameterString ViString Character string defining the requested parameter. 

See AcqrsD1_configAvgConfigInt32 for the list of
accepted strings.

Name Type Description

value ViInt32 *addr Requested information value.

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.
Programmer’s Reference Manual
MATLAB MEX Representation

[status value]= AqD1_getAvgConfigInt32(instrumentID, channel, parameterString)
113

2 Device Driver Function Reference

AcqrsD1_getAvgConfigReal64

Purpose

Returns a double attribute from the analyzer/r configuration channelNbr.

Parameters

Input

Output

Return Value

Discussion

See remarks under AcqrsD1_configAvgConfigReal64.

Visual C++ Representation

ViStatus status = AcqrsD1_getAvgConfigReal64(ViSession instrumentID,
ViInt32 channelNbr, ViString parameterString, ViReal64 *value);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Query Extended r Settings.vi
 This Vi returns the value as either I32 or DBL. Connect the desired type.

Name Type Description

instrumentID ViSession Instrument identifier
channelNbr ViInt32 Channel number. A value = 0 will be treated as =1

for compatibility.
parameterString ViString Character string defining the requested parameter. 

See AcqrsD1_configAvgConfigReal64for the list of
accepted strings.

Name Type Description
value ViReal64 * Requested information value.

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.
114
MATLAB MEX Representation

[status value]= AqD1_getAvgConfigReal64(instrumentID, channel, parameterString)
Programmer’s Reference Manual

Device Driver Function Reference 2

AcqrsD1_getChannelCombination

Purpose

Returns the current channel combination parameters of the digitizer.

Parameters

Input

Output

Return Value

Discussion

See remarks under AcqrsD1_configChannelCombination.

Visual C++ Representation

ViStatus status = AcqrsD1_getChannelCombination(
ViSession instrumentID,
ViInt32* nbrConvertersPerChannel,
ViInt32* usedChannels);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Query Channel Combination.vi

Name Type Description

instrumentID ViSession Instrument identifier

Name Type Description

nbrConvertersPe
rChannel

ViInt32 = 1 all channels use 1 converter each (default)
= 2 half of the channels use 2 converters each
= 4 1/4 of the channels use 4 converters each

usedChannels ViInt32 bit-field indicating which channels are used. See
discussion below

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.
Programmer’s Reference Manual
MATLAB MEX Representation

[status nbrConvertersPerChannel usedChannels]=AqD1_getChannelCombination(instrumentID)
Note: The older form Aq_getChannelCombination is deprecated.

Please convert to the newer version.
115

2 Device Driver Function Reference

AcqrsD1_getControlIO

Purpose

Returns the configuration of a ControlIO connector. (For
DC271-FAMILY/AP-FAMILY/12-bit-FAMILY/ U1071A-FAMILY/10-bit FAMILY/AC/SC
and U1084A only)

Parameters

Input

Output

Return Value

Discussion

ControlIO connectors are front panel IO connectors for special purpose control functions
of the digitizer. Typical examples are user-controlled acquisition control (trigger enable)
or control output signals such as ’10 MHz reference’ or ‘trigger ready’.

The connector numbers are limited to 0 and the supported values. To find out which
connectors are supported by a given module, use this function with connector = 0:

 AcqrsD1_getControlIO(instrID, 0, &ctrlIOPattern, NULL, NULL);
In this case, the returned value of signal is the bit-coded list of the connectors that are
available in the digitizer. E.g. If the connectors 1 (I/O A), 2 (I/O B) and 9 (TrigOut) are
present, the bits 1, 2 and 9 of signal are set, where bit 0 is the LSbit and 31 is the MSbit.

Name Type Description

instrumentID ViSession Instrument identifier
connector ViInt32 Connector Number

 1 = Front Panel I/O A (MMCX or MCX connector)
 2 = Front Panel I/O B (MMCX or MCX connector) 
 3 = Front Panel I/O C (MCX connector, if present)

 9 = Front Panel Trigger Out (MMCX or MCX
connector)

Name Type Description

signal ViInt32 Indicates the current use of the specified connector
0 = Disabled, 6 = Enable trigger etc.
For a detailed list, see the description of
AcqrsD1_configControlIO

qualifier1 ViInt32 The returned values depend on the type of
connector, see the discussion in
AcqrsD1_configControlIO

qualifier2 ViReal64 The returned values depend on the module, see the
discussion in AcqrsD1_configControlIO

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.
116 Programmer’s Reference Manual

Device Driver Function Reference 2
Thus, the low order 16 bits of signal (or ctrlIOPattern in the example above) would be
equal to 0x206.

The DC271-FAMILY, 10-bit-FAMILY, AP-FAMILY, U1071A-FAMILY, 12-bit-FAMILY, and
AC/SC cards support the connectors 1 (front panel I/O A MMCX coax), 2 (front panel
I/O B MMCX coax) and 9 (front panel Trig Out MMCX coax).

Visual C++ Representation

ViStatus status = AcqrsD1_getControlIO(ViSession instrumentID,
 ViInt32 connector, ViInt32* signal,
 ViInt32* qualifier1, ViReal64* qualifier2);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Query Control IO Connectors.vi
Programmer’s Reference Manual

MATLAB MEX Representation

[status signal qualifier1 qualifier2]= AqD1_getControlIO(instrumentID, connector)
Note: The older form Aq_getControlIO is deprecated.

Please convert to the newer version.
117

2 Device Driver Function Reference

AcqrsD1_getExtClock

Purpose

Returns the current external clock control parameters of the digitizer.

Parameters

Input

Output

Return Value

Discussion

See remarks under AcqrsD1_configExtClock.

Name Type Description

instrumentID ViSession Instrument identifier

Name Type Description

clockType ViInt32 = 0 Internal Clock (default at start-up)
= 1 External Clock, continuously running
= 2 External Reference (10 MHz)
= 4 External Clock, with start/stop sequence

inputThreshold ViReal64 Input threshold for external clock or reference in mV
delayNbrSample
s

ViInt32 Number of samples to acquire after trigger , for
'clockType' = 1 only!

inputFrequency ViReal64 The presumed input frequency of the external clock,
for clockType = 1 only

sampFrequency ViReal64 The desired Sampling Frequency, for clockType = 1
only

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.
118 Programmer’s Reference Manual

Device Driver Function Reference 2
Visual C++ Representation

ViStatus status = AcqrsD1_getExtClock(ViSession instrumentID,
ViInt32* clockType, ViReal64* inputThreshold,
ViInt32* delayNbrSamples, ViReal64* inputFrequency,
ViReal64* sampFrequency);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Query External Clock.vi
Programmer’s Reference Manual
MATLAB MEX Representation

[status clockType inputThreshold delayNbrSamples inputFrequency sampFrequency]=
AqD1_getExtClock(instrumentID)

Note: The older form Aq_getExtClock is deprecated.

Please convert to the newer version.
119

2 Device Driver Function Reference

AcqrsD1_getFCounter

Purpose

Returns the current frequency counter configuration

Parameters

Input

Output

Return Value

Name Type Description

instrumentID ViSession Instrument identifier

Name Type Description

signalChannel ViInt32 Signal input channel
type ViInt32 Type of measurement

= 0 Frequency (default)
= 1 Period (1/frequency)
= 2 Totalize by Time
= 3 Totalize by Gate

targetValue ViReal64 User-supplied estimate of the expected value
apertureTime ViReal64 Time in sec, during which the measurement is

executed
reserved ViReal64 Currently ignored
flags ViInt32 Currently ignored

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.
120 Programmer’s Reference Manual

Device Driver Function Reference 2
Visual C++ Representation

ViStatus status = AcqrsD1_getFCounter(ViSession instrumentID,
ViInt32* signalChannel, ViInt32* type, ViReal64* targetValue,
ViReal64* apertureTime, ViReal64* reserved, ViInt32* flags);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Query FCounter.vi
Programmer’s Reference Manual
MATLAB MEX Representation

[status signalChannel typeMes targetValue apertureTime reserved flags]=
AqD1_getFCounter(instrumentID)

Note: The older form Aq_getFCounter is deprecated.

Please convert to the newer version.
121

2 Device Driver Function Reference

AcqrsD1_getHorizontal

Purpose

Returns the current horizontal control parameters of the digitizer.

Parameters

Input

Output

Return Value

Discussion

See remarks under AcqrsD1_configHorizontal.

Visual C++ Representation

ViStatus status = AcqrsD1_getHorizontal(ViSession instrumentID, ViReal64* sampInterval,
ViReal64* delayTime);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Query Horizontal Settings.vi

Name Type Description

instrumentID ViSession Instrument identifier

Name Type Description

sampInterval ViReal64 Sampling interval in seconds
delayTime ViReal64 Trigger delay time in seconds

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.
122
 Programmer’s Reference Manual

Device Driver Function Reference 2

AcqrsD1_getMemory

Purpose

Returns the current memory control parameters of the digitizer.

Parameters

Input

Output

Return Value

Discussion

See remarks under AcqrsD1_configMemory.

Visual C++ Representation

ViStatus status = AcqrsD1_getMemory(ViSession instrumentID,
ViInt32* nbrSamples, ViInt32* nbrSegments);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Query Memory Settings.vi

Name Type Description

instrumentID ViSession Instrument identifier

Name Type Description

nbrSamples ViInt32 Nominal number of samples to record (per
segment!)

nbrSegments ViInt32 Number of segments to acquire. 1 corresponds to
the normal single-trace acquisition mode.

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.
Programmer’s Reference Manual
MATLAB MEX Representation

[status nbrSamples nbrSegments] = AqD1_getMemory(instrumentID)
Note: The older form Aq_getMemory is deprecated.

Please convert to the newer version.
123

2 Device Driver Function Reference

AcqrsD1_getMemoryEx

Purpose

Returns the current extended memory control parameters of the digitizer.

Parameters

Input

Output

Return Value

Discussion

See remarks under AcqrsD1_configMemoryEx.

Name Type Description

instrumentID ViSession Instrument identifier

Name Type Description

nbrSamplesHi ViUInt32 Will be set to 0 (reserved for future use)
nbrSamplesLo ViUInt32 Nominal number of samples to record (per

segment!)
nbrSegments ViInt32 Number of segments to acquire. 1 corresponds to

the normal single-trace acquisition mode.
nbrBanks ViInt32 Number of banks to be used for 10-bit-FAMILY &

U1071A-FAMILY SAR mode
flags ViInt32 = 0 default memory use

= 1 force use of internal memory (for 10-bit-FAMILY
& U1071A-FAMILY digitizers with extended memory
options only).

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.
124 Programmer’s Reference Manual

Device Driver Function Reference 2
Visual C++ Representation

ViStatus status = AcqrsD1_getMemoryEx(ViSession instrumentID,
ViUInt32* nbrSamplesHi, ViUInt32* nbrSamplesLo,
ViInt32* nbrSegments, ViInt32* nbrBanks, ViInt32* flags);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Query Extended Memory Settings.vi
Programmer’s Reference Manual
MATLAB MEX Representation

[status nbrSamplesHi nbrSamplesLo nbrSegments nbrBanks flags]=
AqD1_getMemoryEx(instrumentID)

Note: The older form Aq_getMemoryEx is deprecated.

Please convert to the newer version.
125

2 Device Driver Function Reference

AcqrsD1_getMode

Purpose

Returns the current operational mode of the digitizer

Parameters

Input

Output

Return Value

Discussion

See remarks under AcqrsD1_configMode.

Visual C++ Representation

ViStatus status = AcqrsD1_getMode(ViSession instrumentID,
 ViInt32* mode, ViInt32* modifier, ViInt32* flags);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Query Operation Mode.vi

Name Type Description

instrumentID ViSession Instrument identifier

Name Type Description

mode ViInt32 Operational mode
modifier ViInt32 Modifier, currently not used
flags ViInt32 Flags

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.
126
MATLAB MEX Representation

[status mode modifiers flags] = AqD1_getMode(instrumentID)
Note: The older form Aq_getMode is deprecated.

Please convert to the newer version.
Programmer’s Reference Manual

Device Driver Function Reference 2

AcqrsD1_getMultiInput

Purpose

Returns the multiple input configuration on a channel.

Parameters

Input

Output

Return Value

Discussion

This function is only of use for instruments with an input-multiplexer (i.e. more than 1
input per digitizer, e.g. DP211). On the "normal" instruments with a single input per
channel, this function may be ignored.

Visual C++ Representation

ViStatus status = AcqrsD1_getMultiInput(ViSession instrumentID,
ViInt32 channel, ViInt32* input);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Query Multiplexer Input.vi

MATLAB MEX Representation

[status input] = AqD1_getMultiInput(instrumentID, channel)

Name Type Description

instrumentID ViSession Instrument identifier
channel ViInt32 1...Nchan

Name Type Description

input ViInt32 = 0 input connection A
= 1 input connection B

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.
Programmer’s Reference Manual
Note: The older form Aq_getMultiInput is deprecated.

Please convert to the newer version.
127

2 Device Driver Function Reference

AcqrsD1_getSetupArray

Purpose

Returns an array of configuration parameters. It is useful for Analyzers only.

Parameters

Input

Output

Return Value

AqGateParameters

U1084AThresholds

Discussion

For the object definition refer to AcqrsD1_configSetupArray. If
AcqrsD1_getSetupArray is called without having set the Parameters before, the default
values will be returned.

Note: The driver contains a set of 64 default AqGateParameters, defined as { {0,256}
{256, 256} {512, 256} {768, 256} ... }.

Name Type Description

instrumentID ViSession Instrument identifier
channel ViInt32 1...Nchan
setupType ViInt32 Type of setup.

0 = GateParameters
nbrSetupObj ViInt32 Maximum allowed number of setup objects in the

output.

Name Type Description

setupData ViAddr Pointer to an array for the setup objects
ViAddr resolves to void* in C/C++. The user must
allocate the appropriate array and supply its
address as ‘setupData’

nbrSetupObj-
Returned

ViInt32 Number of setup objects returned

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Name Type Description
GatePos ViInt32 Start position of the gate
GateLength ViInt32 Length of the gate

Name Type Description
threshold ViReal64 Threshold value to use in Volts.
nextThreshSample ViUInt32 The index of the sample in the segment, at which the

Zero-Suppression system should switch to the next
threshold in the array.

reseved ViInt32 Reserved field, must be 0.
128 Programmer’s Reference Manual

Device Driver Function Reference 2
Visual C++ Representation

ViStatus status = AcqrsD1_getSetupArray(ViSession instrumentID, ViInt32 channel,
ViInt32 setupType, ViInt32 nbrSetupObj,
ViAddr setupData, ViInt32* nbrSetupObjReturned);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Query Setup Array.vi
Programmer’s Reference Manual
MATLAB MEX Representation

[status setupData nbrSetupObjReturned] = AqD1_getSetupArray(instrumentID,
channel,setupType, nbrSetupObj)

Note: The older form Aq_getSetupArray is deprecated.

Please convert to the newer version.
129

2 Device Driver Function Reference

AcqrsD1_getTrigClass

Purpose

Returns the current trigger class control parameters of the digitizer.

Parameters

Input

Output

Return Value

Discussion

See remarks under AcqrsD1_configTrigClass.

Name Type Description

instrumentID ViSession Instrument identifier

Name Type Description

trigClass ViInt32 = 0 edge trigger
= 1 TV trigger (12-bit-FAMILY External only)
= 3 OR (10-bit & U1071A-FAMILIES)
= 4 NOR (10-bit & U1071A-FAMILIES)
= 5 AND (10-bit & U1071A-FAMILIES)
= 6 NAND (10-bit & U1071A-FAMILIES)

sourcePattern ViInt32 = 0x000n0001 for Channel 1,
= 0x000n0002 for Channel 2,
= 0x000n0004 for Channel 3,
= 0x000n0008 for Channel 4 etc.
= 0x800n0000 for External Trigger 1,
= 0x400n0000 for External Trigger 2 etc.
where n is 0 for single instruments, or the module
number for MultiInstruments (AS bus operation).
See discussion below.

validatePattern ViInt32 Currently returns "0"
holdType ViInt32 Currently returns "0"
holdoffTime ViReal64 Currently returns "0"
reserved ViReal64 Currently returns "0"

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.
130 Programmer’s Reference Manual

Device Driver Function Reference 2
Visual C++ Representation

ViStatus status = AcqrsD1_getTrigClass(ViSession instrumentID,
ViInt32* trigClass,
ViInt32* sourcePattern, ViInt32* validatePattern,
ViInt32* holdType, ViReal64* holdoffTime, ViReal64* reserved);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Query Trigger Class.vi
Programmer’s Reference Manual

MATLAB MEX Representation

[status trigClass sourcePattern validatePattern holdType holdoffTime reserved] =
AqD1_getTrigClass(instrumentID)

Note: The older form Aq_getTrigClass is deprecated.

Please convert to the newer version.
131

2 Device Driver Function Reference

AcqrsD1_getTrigSource

Purpose

Returns the current trigger source control parameters for a specified channel.

Parameters

Input

Output

Return Value

Discussion

See remarks under AcqrsD1_configTrigSource.

Name Type Description

instrumentID ViSession Instrument identifier
channel ViInt32 = 1...(Number of IntTrigSources) for internal sources

= -1..-(Number of ExtTrigSources) for external
 sources
See discussion below.

Name Type Description

trigCoupling ViInt32 = 0 DC
= 1 AC
= 2 HF Reject
= 3 DC, 50 W
= 4 AC, 50 W

trigSlope ViInt32 = 0 Positive
= 1 Negative
= 2 out of Window
= 3 into Window
= 4 HF divide
= 5 Spike Stretcher

trigLevel1 ViReal64 Trigger threshold in % of the vertical Full Scale of the
channel, or in mV if using an External trigger source.
See discussion below.

trigLevel2 ViReal64 Trigger threshold 2 (as above) for use when Window
trigger is selected

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.
132 Programmer’s Reference Manual

Device Driver Function Reference 2
Visual C++ Representation

ViStatus status = AcqrsD1_getTrigSource(ViSession instrumentID,
ViInt32 channel, ViInt32* trigCoupling,
ViInt32* trigSlope, ViReal64* trigLevel1, ViReal64* trigLevel2);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Query Extended Trigger Source.vi
Programmer’s Reference Manual
MATLAB MEX Representation

[status trigCoupling trigSlope trigLevel1 trigLevel2] =
AqD1_getTrigSource(instrumentID, channel)

Note: The older form Aq_getTrigSource is deprecated.

Please convert to the newer version.
133

2 Device Driver Function Reference

AcqrsD1_getTrigTV

Purpose

Returns the current TV trigger parameters (12-bit-FAMILY only).

Parameters

Input

Output

Return Value

Discussion

See discussion under AcqrsD1_configTrigTV.

Name Type Description

instrumentID ViSession Instrument identifier
channel ViInt32 = -1..-(Number of ExtTrigSources) for external

 sources
See discussion below.

Name Type Description

standard ViInt32 = 0 625/50/2:1 (PAL or SECAM)
= 2 525/60/2:1 (NTSC)

field ViInt32 = 1 Field 1 - odd
= 2 Field 2 - even

line ViInt32 = line number, depends on the parameters above:
For 'standard' = 625/50/2:1
= 1 to 313 for 'field' = 1
= 314 to 625 for 'field' = 2
For 'standard' = 525/60/2:1
= 1 to 263 for 'field' = 1
= 1 to 262 for 'field' = 2

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.
134 Programmer’s Reference Manual

Device Driver Function Reference 2
Visual C++ Representation

ViStatus status = AcqrsD1_getTrigTV (ViSession instrumentID,
ViInt32 channel, ViInt32* standard,
ViInt32* field, ViInt32* line);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Query Trigger TV.vi
Programmer’s Reference Manual
MATLAB MEX Representation

[status standard field line] = AqD1_getTrigTV(instrumentID, channel)
Note: The older form Aq_getTrigTV is deprecated.

Please convert to the newer version.

135

2 Device Driver Function Reference

AcqrsD1_getVertical

Purpose

Returns the vertical control parameters for a specified channel in the digitizer.

Parameters

Input

Output

Return Value

Discussion

See remarks under AcqrsD1_configVertical.

Name Type Description

instrumentID ViSession Instrument identifier
channel ViInt32 1...Nchan, or –1,… for the External Input

Name Type Description

fullScale ViReal64 in Volts
offset ViReal64 in Volts
coupling ViInt32 = 1 DC, 1 MW

= 2 AC, 1 MW
= 3 DC, 50 W
= 4 AC, 50 W

bandwidth ViInt32 = 0 no bandwidth limit (default)
= 1 bandwidth limit at 25 MHz
= 2 bandwidth limit at 700 MHz
= 3 bandwidth limit at 200 MHz
= 4 bandwidth limit at 20 MHz
= 5 bandwidth limit at 35 MHz

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.
136 Programmer’s Reference Manual

Device Driver Function Reference 2
Visual C++ Representation

ViStatus status = AcqrsD1_getVertical(ViSession instrumentID,
ViInt32 channel, ViReal64* fullScale,
ViReal64* offset, ViInt32* coupling, ViInt32* bandwidth);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Query Vertical Settings.vi
Programmer’s Reference Manual
MATLAB MEX Representation

[status fullScale offset coupling bandwidth] = AqD1_getVertical(instrumentID, channel)

Note: The older form Aq_getVertical is deprecated.

Please convert to the newer version.

137

2 Device Driver Function Reference

AcqrsD1_multiInstrAutoDefine

Purpose

Automatically initializes all digitizers and combines as many as possible to
MultiInstruments. Digitizers are only combined if they are physically connected via AS
bus.

Parameters

Input

Output

Return Value

Discussion

This call must be followed by nbrInstruments calls to the functions Acqrs_init or
Acqrs_InitWithOptions to retrieve the instrumentID of the (multi)digitizers.

In the case of multiple processes accessing the Agilent Acqiris instruments, this
function will return the number of currently available instruments. If an instrument has
already been initialized in another process, it will not be available unless it has been
suspended via a call to Acqrs_suspendControl.

You should refer to to the Programmer’s Guide section 3.2, Device Initialization, for a
detailed explanation on the initialization procedure.

Name Type Description

optionsString ViString ASCII string which specifies options.
Currently no options are supported.

Name Type Description

nbrInstruments ViInt32 Number of user-accessible instruments. It also
includes single instruments that don't participate on
the AS bus.

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.
138 Programmer’s Reference Manual

Device Driver Function Reference 2
Visual C++ Representation

ViStatus status = AcqrsD1_multiInstrAutoDefine(ViString optionsString,
ViInt32* nbrInstruments);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) MultiInstrument Auto Define.vi
Programmer’s Reference Manual
MATLAB MEX Representation

[status nbrInstruments] = AqD1_multiInstrAutoDefine(optionsString)

Note: The older form Aq_multiInstrAutoDefine is deprecated.

Please convert to the newer version.
139

2 Device Driver Function Reference

AcqrsD1_multiInstrDefine

Purpose

This function defines the combination of a number of digitizers connected by AS bus
into a single MultiInstrument. It is not applicable to AS bus 2 modules.

Parameters

Input

Output

Return Value

Discussion

You should refer to to the Programmer’s Guide section 3.2, Device Initialization, for a
detailed explanation on the initialization procedure.

The function returns the error code ACQIRIS_ERROR_MODULES_NOT_ON_SAME_BUS
if all modules in the instrumentList are not on the same bus.

It may also return the error codes ACQIRIS_ERROR_NOT_ENOUGH_DEVICES or
ACQIRIS_ERROR_NO_MASTER_DEVICE, when nbrInstruments is < 2 or the masterID
is not one of the values in the instrumentList.

This function should only be used if the choices of the automatic initialization function
AcqrsD1_multiInstrAutoDefine must be overridden. If the function executes
successfully, the instrumentID presented in the instrumentList cannot be used
anymore, since they represent individual digitizers that have become part of the new
MultiInstrument, identified with newly returned instrumentID. Please refer to the
Programmer’s Guide section 3.2.8, Manual Definition of MultiInstruments for more
information.

Name Type Description

instrumentList ViSession [] Array of 'instrumentID' of already initialized single
digitizers

nbrInstruments ViInt32 Number of digitizers in the 'instrumentList'
masterID ViSession 'instrumentID' of master digitizer

Name Type Description

instrumentID ViSession Instrument identifier

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.
140 Programmer’s Reference Manual

Device Driver Function Reference 2
Visual C++ Representation

ViStatus status = AcqrsD1_multiInstrDefine(ViSession instrumentList[],
ViInt32 nbrInstruments, ViSession masterID, ViSession* instrumentID);

LabView Representation

Acqiris Dx.lvlib: (or Aq Dx) Configure MultiInstrument Manual Define.vi
Programmer’s Reference Manual
MATLAB MEX Representation

[status instrumentID] = AqD1_multiInstrDefine(instrumentList, nbrInstruments, masterID)

Note: The older form Aq_multiInstrDefine is deprecated.

Please convert to the newer version.
141

2 Device Driver Function Reference

AcqrsD1_multiInstrUndefineAll

Purpose

Undefines all MultiInstruments.

Parameters

Input

Return Value

Discussion

You should refer to to the Programmer’s Guide section 3.2, Device Initialization, for a
detailed explanation on the initialization procedure.

This function is almost never needed, except if you want to dynamically redefine
MultiInstruments with the aid of the function AcqrsD1_multiInstrDefine. If the function
executes successfully, the instrumentID of the previously defined MultiInstruments
cannot be used anymore. You must either have remembered the instrumentID of the
single instruments that made up the MultiInstruments, or you must reestablish all
instrumentIDs of all digitizers by reinitializing with the code shown in the
Programmer’s Guide section 3.2.1, Identification by Order Found.

Visual C++ Representation

ViStatus status = AcqrsD1_multiInstrUndefineAll(ViString optionsString);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Configure MultiInstrument Undefine.vi

Name Type Description
optionsString ViString ASCII string which specifies options.

Currently no options are supported.

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.
142
MATLAB MEX Representation

[status] = AqD1_multiInstrUndefineAll(optionsString)

Note: The older form Aq_multiInstrUndefineAll is deprecated.

Please convert to the newer version.
Programmer’s Reference Manual

Device Driver Function Reference 2

AcqrsD1_procDone

Purpose

Checks if the on-board data processing has terminated. This routine is for Analyzers
only.

Parameters

Input

Output

Return Value

Visual C++ Representation

ViStatus status = AcqrsD1_procDone(ViSession instrumentID,
ViBoolean* done);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Query Process Done.vi

Name Type Description

instrumentID ViSession Instrument identifier

Name Type Description

done ViBoolean done = VI_TRUE if the processing is terminated
 VI_FALSE otherwise

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.
Programmer’s Reference Manual
MATLAB MEX Representation

[status done] = AqD1_procDone(instrumentID)
Note: The older form Aq_procDone is deprecated. 
Please convert to the newer version.
143

2 Device Driver Function Reference

AcqrsD1_processData

Purpose

Starts on-board data processing on acquired data in the current bank as soon as the
current acquisition terminates. It can also be used to allow the following acquisition to
be started as soon as possible. This routine is for AP Analyzers only.

Parameters

Input

Return Value

Name Type Description

instrumentID ViSession Instrument identifier
processType ViInt32 Type of processing 

0 = no processing (or other Analyzers)
 and for AP101/AP201 ONLY
1 = gated peak detection, extrema mode
2 = gated peak detection, hysteresis mode
3 = interpolated peaks, extrema mode
4 = interpolated peaks, hysteresis mode

 And for AP PeakTDC Analyzers
0 = respect the settings done with
 AcqrsD1_configAvgConfig
1 = gated peak detection with hystersis
2 = gated and interpolated peak detection with
 hysteresis
3 = gated peak detection with 8-point peak region
4 = gated peak detection with 16-point peak region

flags ViInt32 Autoswitch functionality
0 = do (re-)processing in same bank
1 = start the next acquisition in the other bank
2 = switch banks but do not start next acquisition

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.
144 Programmer’s Reference Manual

Device Driver Function Reference 2
Visual C++ Representation

ViStatus status = AcqrsD1_processData(ViSession instrumentID,
ViInt32 processType, ViInt32 flags);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Process Data.vi
Programmer’s Reference Manual
MATLAB MEX Representation

[status] = AqD1_processData(instrumentID, processType, flags)

Note: The older form Aq_processData is deprecated.

Please convert to the newer version.
145

2 Device Driver Function Reference

AcqrsD1_readData

Purpose

Returns all waveform information. The sample data is returned in an array whose type is
specified in the AqReadParameters structure.

Parameters

Input

Output

Return Value

Read Parameters in AqReadParameters

Name Type Description

instrumentID ViSession Instrument identifier
channel ViInt32 1...Nchan
readPar AqReadParameters Requested parameters for the acquired

waveform.

Name Type Description

dataArray ViAddr User-allocated waveform destination array.
The array size restrictions are given below.
ViAddr resolves to void* in C/C++.

dataDesc AqDataDescriptor Waveform descriptor structure, containing
waveform information that is common to all
segments.

segDescArray ViAddr Segment descriptor structure array, containing data
that is specific for each segment. The size of the
array is defined by nbrSegments and the type by
readMode.If readMode =4 there are no segment
descriptors.

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Name Type Description

dataType ViInt32 Type representation of the waveform
0 = 8-bit ((ViInt8) = 1 byte
1 = 16-bit (ViInt16) = 2 bytes
2 = 32-bit (ViInt32/ViUInt32) = 4 bytes
3 = 64-bit (ViReal64) = 8 bytes
146 Programmer’s Reference Manual

Device Driver Function Reference 2

readMode ViInt32 readout mode of the digitizer
0 = standard waveform (single segment only)
1 = image read for sequence waveform
2 = d waveform (from an r ONLY)
3 = gated waveform (from an AP101/AP201 ONLY)
4 = peaks (from an AP101/AP201 or AP PeakTDC)
5 = short d waveform (from an AP r)
6 = shifted short d waveform (from an AP r)
7 = gated data from an SSR or AP PeakTDC Analyzer
9 = PeakTDC Histogram readout from an Analyzer
10 = PeakTDC Peak region readout from an
 AP Analyzer
11 = raw sequence waveform read

firstSegment ViInt32 Requested first segment number, may assume 0 to
the (number of segments – 1).

nbrSegments ViInt32 Requested number of segments, may assume 1 to
the actual number of segments.

firstSampleInSeg ViInt32 Requested position of first sample to read, typically
0. May assume 0 to the actual (number of samples –
1).

nbrSamplesInSeg ViInt32 Requested number of samples, may assume 1 to the
actual number of samples.

segmentOffset ViInt32 ONLY used for readMode = 1 in DIGITIZERS and
nowhere else: Requested offset, in number of
samples, between adjacent segments in the
destination buffer dataArray. Must be ³
nbrSamplesInSeg

dataArraySize ViInt32 Number of bytes in the user-allocated dataArray.
Used for verification / protection.

segDescArraySize ViInt32 Number of bytes in the user-allocated
segDescArray. Used for verification / protection.

flags ViInt32 For AP Averagers: Bit 2 controls wether the
accumulated data is reset after being read.
Bit 2 = 0 : Data is reset after being read.
Bit 2 = 1 : Data is not reset.
AcqirisDataTypes.h contains AqReadDataFlags an
enum which encodes the above values.

reserved ViInt32 Reserved for future use, set to 0.
reserved2 ViReal64 Reserved for future use, set to 0.
reserved3 ViReal64 Reserved for future use, set to 0.
Programmer’s Reference Manual 147

2 Device Driver Function Reference

Segment Descriptor for Normal Waveforms (readMode = 0,1,3) in AqSegmentDescriptor

Segment Descriptor for d Waveforms (readMode = 2,5,6) in
 AqSegmentDescriptorAvg

Segment Descriptor for Raw Sequence Waveforms (readMode = 11) in
AqSegmentDescriptorSeqRaw

Name Type Description

horPos ViReal64 Horizontal position of first data point.
timeStampLo
timeStampHi

ViUInt32
ViUInt32

Low and high part of the 64-bit trigger timestamp.
See discussion below.

Name Type Description

horPos ViReal64 Horizontal position of first data point.
timeStampLo
timeStampHi

ViUInt32
ViUInt32

Low and high part of the 64-bit trigger timestamp.
See discussion below.

actualTriggersInSeg ViUInt32 Number of actual triggers acquired in this segment
avgOvfl ViInt32 Acquisition overflow. See discussion below.
avgStatus ViInt32 depth and status. See discussion below.
avgMax ViInt32 Max value in the sequence. See discussion below.
flags ViUInt32 The lowest four bits contain the hardware marker

values.
For AP Averagers, these are:
Bit 0 (LSB) = P1, Bit 1 = P2
Bit 2 = I/O A Bit 3 = I/O B
The marker is set at the last trigger, in the first round
of the acquisition of the segment.
For U1084A in Averager mode, these are:
Bit 0 (LSB) = SSR bank, Bit 1 = I/O A
Bit 2= I/O B, Bit 3 (MSB) = I/O C

reserved ViInt32 Reserved for future use

Name Type Description

horPos ViReal64 Horizontal position of first data point.
timeStampLo
timeStampHi

ViUInt32
ViUInt32

Low and high part of the 64-bit trigger timestamp.
See discussion below.

indexFirstPoint ViUInt32 Pointer to first sample of this segment
actualSegmentSize ViUInt32 Actual segment size, for the size of the circular

buffer
reserved ViInt32 Reserved for future use
148 Programmer’s Reference Manual

Device Driver Function Reference 2

Data Descriptor in AqDataDescriptor

Discussion

All structures used in this function can be found in the header file AcqirisDataTypes.h.
This file also contains enum definitions for the allowed values of the members of the
AqReadParameters structure.

The type of the dataArray is determined from the AqReadParameters struct entry
dataType.

Remember to set all values of the AqReadParameters structure, including the reserved
values.

The following dataType and readMode combinations are supported:

Name Type Description

returnedSamplesPerS
eg

ViInt32 Total number of data samples actually returned.
DataArray[indexFirstPoint]…
DataArray[indexFirstPoint+
returnedSamplesPerSeg-1]

indexFirstPoint ViInt32 Offset of the first valid data point, that of the first
sample, in the destination array. It should always be
in the range [0...31]. It is not an offset in bytes but
rather and index in units of samples that may occupy
more than one byte.

sampTime ViReal64 Sampling interval in seconds.
vGain ViReal64 Vertical gain in Volts/LSB. See discussion below.
vOffset ViReal64 Vertical offset in Volts. See discussion below.
returnedSegments ViInt32 Number of segments
nbrAvgWforms ViInt32 Number of d waveforms (nominal) in segment
actualTriggersInAcqLo
actualTriggersInAcqHi

ViUInt32
ViUInt32

Low and high part of the 64-bit count of the number
of triggers taken for the entire acquisition

actualDataSize ViUInt32 Actual length in bytes used at dataArray. This value
is only returned for SSR and PeakTDC Analyzers.

reserved2 ViInt32 Reserved for future use
reserved3 ViReal64 Reserved for future use
Programmer’s Reference Manual
0 =
standard

1 =
image

2 =
d

3 =
gated

4 =
peaks

0 = Int8 8,10 8,10 - APX01 -

1 = Int16 10,12 10,12 - - -

2 = Int32 - - X - AP PeakTDC

3 = Real64 X X X - APX01
149

150

2 Device Driver Function Reference

In this table

5 =
 short
d

6 = shifted
 short
 d

7 =
SSR

9 =
Histogram

10 =
peak
region

11 =
sequence
raw

0 = Int8 - - X 8,10
1 = Int16 AP AVG AP AVG - PeakTDC 10,12
2 = Int32 - - - PeakTDC AP PeakTDC

3 = Real64 AP AVG AP AVG -
• ‘X’ means that the functionality is available depending on the option
but independent of the model,

• '8' means that the functionality is available for 8-bit Digitizers and AP
units in the digitizer mode,

• '10' means that it is available for the 10-bit Digitizers,

• '12' means that it is available for the 12-bit Digitizers.
It must be remembered that 12-bit digitizers generate 12 or 13-bit data which will be
transferred as 2 bytes with the data shifted so that the MSB of the data becomes the
MSB of the 16-bit word, thus preserving the sign information. The vGain value is
therefore not the gain of the ADC in volts/LSB but rather the volts/LSB of the 16-bit
word.

10-bit digitizers generate 12-bit data which can be transferred in either of 2 ways

2 bytes with the data shifted so that the MSB of the data becomes the MSB of the 16-bit
word, thus preserving the sign information

1 byte with the 8-bit data of the most significant bits of the ADC value. Here the lowest
two bits will be lost (truncated). The advantage is that the amount of data to be
transferred has been cut by a factor of 2.

Real64 readout of 10-bit digitizers is based on 16-bit transfer of the data,

The value in Volts of any integer data point data in the returned dataArray for a digitizer
can be computed with the formula:
V = vGain * data – vOffset
Except in the case of AP Analyzers, the data points for dataType = 3 are in Volts and no
conversion is needed. For AP Analyzers the data points are in units of the LSB of the
ADC and must be converted using the formula above.

For readMode = 0 and dataType ≤ 1, indexFirstPoint must be used for the correct
identification of the first data point in the dataArray. With the U1084A, indexFirstPoint
must be used for all readModes and dataTypes.

In general, it is recommended to always take indexFirstPoint into account, as future
products may use this field more often to compensate for stricter buffer alignment
requirements.
Programmer’s Reference Manual

Device Driver Function Reference 2

The 3 "d" modes correspond to:

2 – 24-bit or 32-bit data read as such into either Int32 32-bit integers or converted
into volts for Real64,

5 – 16-bit data read of the least significant 16 bits of the 24-bit sum. The result is
presented in either an Int16 array or converted into volts for Real 64. The user is
responsible for treating any potential overflows,

6 – 16-bit data read of the most significant 16 bits of the 24-bit sum. The result is
presented in either an Int16 array or converted into volts for Real 64. The user is
responsible for treating any potential overflows.

It should also be noted that the interpretation of r results was discussed in the
Programmer’s Guide section 3.10.5, Reading an d Waveform from an r and 3.10.6,
Reading a RT Add/Subtract d Waveform from an r.

If readMode is set to gated, the nbrSamplesInSeg is set to the sum of the gate lengths.

The rules for the allocation of memory for the dataArray are as follows:

For digitizers (or other modules used as such)

with readMode = 0 and dataType = 0, the array size in bytes must be at least
(nbrSamplesInSeg+32).

with readMode = 0 and dataType = 1, the array size in words

must be at least (nbrSamplesInSeg+32).

with readMode = 0 and dataType = 3, the array size in bytes must be at least

max(40,8*nbrSamplesInSeg) for 8-bit digitizers and max(88,8*nbrSamplesInSeg) for
10-bit and 12-bit digitizers.

with readMode = 1 or readMode = 11 the waveform destination array dataArray
must not only allocate enough space to hold the requested data, but also some
additional space. This function achieves a higher transfer speed by simply
transferring an image of the digitizer memory to the CPU memory, and then
reordering all circular segment buffers into linear arrays. Since allocating a
temporary buffer for the memory image is time consuming, the user-allocated
destination buffer is also used as a temporary storage for the memory image. The
rule for the minimum storage space to allocate with waveformArray is discussed in
the Programmer’s Guide section 3.10.2, Reading Sequences of Waveforms.

For AP rs

with readMode = 0,1 cannot be used. If the AcqrsD1_configMode mode is set to 0
(normal data acquisition) please use the digitizer rules above

with readMode = 2, 5 or 6 are allowed and the size

must be at least nbrSamplesInSeg* nbrSegments * size_of_dataType
Programmer’s Reference Manual
 151

2 Device Driver Function Reference

For U1084A rs

with readMode = 0,1 cannot be used. If the AcqrsD1_configMode mode is set to 0
(normal data acquisition) please use the digitizer rules above

only readMode = 2 is allowed and the buffer size in bytes must be at least
(nbrSamplesInSeg * nbrSegments)* size_of_dataType + 16
152
For AP analyzers

readMode = 0,1 cannot be used. If the AcqrsD1_configMode mode is set to 0
(normal data acquisition) please use the digitizer rules above

readMode = 2 cannot be used

with readMode = 3 the array size must be at least the sum of all gate lengths.

with readMode = 4 in the APx01 analyzers the array size must be
 4*sizeof(double) * number of gates

with readMode = 4 in the PeakTDC analyzers the array size must be 
 8 * number of peaks

with readMode = 7 in the PeakTDC or SSR analyzers the array size must be
 nbrSegments * (16 + nbrSamplesInSeg) for the simple case of
 all the data in a single gate.
For other cases please see the Programmer’s Guide section 3.10.7,
Reading SSR Analyzer Waveforms, for a detailed explanation.
with readMode = 9 the array size must be at least
 2**HistoRes*nbrSamplesInSeg*nbrSegments*size_of_dataType
 if a segmented histogram is used and where 
 HistoRes is the value used in the call to Acqrs_configAvgConfig with
 "TdcHistogramHorzRes".

 nbrSegments is either 1 or the number of segments if the value used in the call to
 Acqrs_configAvgConfig with "TdcHistogramMode" is 1

 size_of_dataType = 2*(1+HistoDepth), where HistoDepth is the value used in the
 call to Acqrs_configAvgConfig with "TdcHistogramDepth"

for all other cases, its size, in bytes, must be at least 
 nbrSamplesInSeg* nbrSegments*size_of_dataType

For configuring gate parameters see the User Manual: Family of Analyzers
For U1084A PeakTDC analyzers

readMode = 0 can be used to read the last trace which contributed to the histogram.
The rules are the same as for digitizer mode. This feature is intended solely as a
convenience for debugging and display purposes.

Use readMode = 9 to read the histogram. The data array size must be at least
 2**HistoRes*nbrSamplesInSeg*nbrSegments*size_of_dataType + 16 
if a segmented histogram is used, where HistoRes is the value used in the call to
Acqrs_configAvgConfig with "TdcHistogramHorzRes".
Programmer’s Reference Manual

Device Driver Function Reference 2

The value of returnedSamplesPerSeg for readMode = 7 is not useable and therefore set
to 0.

If used the segment descriptor array segDesc[] must always be allocated with a length
that corresponds to the total number of segments requested with nbrSegments in
AqReadParameters. The first requested segment is therefore deposited in SegDesc[0].
The segment descriptor array must also be allocated with the correct structure type that
depends on the readMode. If not used a Null pointer can be passed to the function.
There are no segment descriptors for readMode = 4, 7, 9, and 10.

The returned segment descriptor values timeStampLo and timeStampHi are
respectively the low and high parts of the 64-bit trigger timestamp. For most models the
units are picoseconds, with some exceptions. The timestamp is the trigger time with
respect to an arbitrary time origin (this can be the start-time of the acquisition, or the
time since power up, depending on the model being used), which is intended for the
computation of time differences between segments of a Sequence acquisition. Please
refer to the Programmer’s Guide section 3.15, Timestamps, for a detailed explanation.

The returned segment descriptor value horPos is the horizontal position, for the
segment, of the first (nominal) data point with respect to the origin of the nominal
trigger delay in seconds. Since the first data point is BEFORE the origin, this number will
be in the range [-sampTime, 0]. Refer to the Programmer’s Guide section 3.12, Trigger
Delay and Horizontal Waveform Position, for a detailed discussion of the value
delayTime. For d Waveforms, the value of horPos will always be 0.

avgOvfl, avgStatus and avgMax will apply to Signal rs only. The features that they
support have not yet been implemented.

The value of segmentOffset must be nbrSamplesInSeg. The waveforms are thus
transferred sequentially into a single linear buffer, with 'holes' of length (segmentOffset
– nbrSamplesInSeg) between them. Such 'holes' could be used for depositing additional
segment-specific information before storing the entire sequence as a single array to
disk. If you specify firstSegment > 0, you don’t have to allocate any buffer space for
waveforms that are not read, i.e. waveformArray[0] corresponds to the first sample of
the segment firstSegment.

Example: In a DC270, if you specify nbrSamplesInSeg = segmentOffset = 1500. Then
with nbrSegments = 80 and nbrSamplesNom = 1000, since the currentSegmentPad =
408, you would have to allocate at least 1408 * (80 + 1) = 114'048 bytes.

It is strongly recommended to allocate the waveform destination buffers permanently
rather than dynamically, in order to avoid system overheads for buffer
allocation/deallocation.
Programmer’s Reference Manual 153

2 Device Driver Function Reference

Visual C++ Representation

ViStatus status = AcqrsD1_readData(ViSession instrumentID,
ViInt32 channel, AqReadParameters* readPar,
ViAddr dataArray, AqDataDescriptor* descriptor, ViAddr segDesc);

LabVIEW Representations

Acqiris Dx.lvlib: (or Aq Dx) Read Multi-Segments.vi
This Vi is polymorphic, the sample data is returned in an array of type I8, I16 or DBL.

It is meant for the readout of multiple segments with readMode = 1.
154
Acqiris Dx.lvlib: (or Aq Dx) Read Single Segment.vi
This Vi is polymorphic, the sample data is returned in an array of type I8, I16.

It is meant for the readout of a single segment with readMode = 0.
Acqiris Dx.lvlib: (or Aq Dx) Read r Data.vi
This Vi is polymorphic, the sample data is returned in an array of type I32 or DBL

It is meant for the readout of an r with readMode = 2.
Acqiris Dx.lvlib: (or Aq Dx) Read Gated Data.vi
It is meant for the readout of an analyzer with readMode = 3.
Programmer’s Reference Manual

Device Driver Function Reference 2
Acqiris Dx.lvlib: (or Aq Dx) Read Peaks Data.vi
This Vi is polymorphic, the sample data is returned in an array of type I32 or DBL

It is meant for the readout of an analyzer with readMode = 4.
Programmer’s Reference Manual
Acqiris Dx.lvlib: (or Aq Dx) Read SSR Data.vi
It is meant for the readout of an analyzer with readMode = 7.
Acqiris Dx.lvlib: (or Aq Dx) Read Histogram Data.vi
This Vi is polymorphic, the sample data is returned in an array of type I16 or I32

It is meant for the readout of an PeakTDC analyzer with readMode = 9.

MATLAB MEX Representation

[status dataDesc segDescArray dataArray] = AqD1_readData(instrumentID, channel, readPar)
Note: The older form Aq_readData is deprecated.

Please convert to the newer version.
155

2 Device Driver Function Reference

AcqrsD1_readFCounter

Purpose

Returns the result of a frequency counter measurement

Parameters

Input

Output

Return Value

Discussion

The result must be interpreted as a function of the effected measurement ‘type’:

Visual C++ Representation

ViStatus status = AcqrsD1_readFCounter(ViSession instrumentID, ViReal64* result);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Read FCounter.vi

Name Type Description

instrumentID ViSession Instrument identifier

Name Type Description

result ViReal64 Result of measurement

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Measurement Type Units
 0 Frequency Hz
 1 Period Sec
 2 Totalize by Time Counts
 3 Totalize by Gate Counts
156
MATLAB MEX Representation

[status result] = AqD1_readFCounter(instrumentID)
Note: The older form Aq_readFCounter is deprecated.

Please convert to the newer version.
Programmer’s Reference Manual

Device Driver Function Reference 2

AcqrsD1_reportNbrAcquiredSegments

Purpose

Returns the number of segments already acquired for a digitizer. For rs (but not AP100 or
AP200) it will give the number of triggers already accepted for the current acquisition. In
the case of analyzers it will return the value 1 at the end of the acquisition and is
therefore not of much use.

Parameters

Input

Output

Return Value

Discussion

Can be called after an acquisition, in order to obtain the number of segments/triggers
actually acquired (until AcqrsD1_stopAcquisition was called).

As needed the result should be interpreted as a ViUInt32.

Name Type Description

instrumentID ViSession Instrument identifier

Name Type Description

nbrSegments ViInt32 Number of segments already acquired

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

NOTE For a digitizer, calling this function while an acquisition is active, in order
to follow the progress of a Sequence acquisition, is dangerous and must
be avoided.
Programmer’s Reference Manual 157

2 Device Driver Function Reference

Visual C++ Representation

ViStatus status = AcqrsD1_reportNbrAcquiredSegments(ViSession instrumentID,
ViInt32* nbrSegments);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Query Number of Acquired Segments.vi
158
MATLAB MEX Representation

[status nbrSegments] = Aqd1_reportNbrAcquiredSegments(instrumentID)

Note: The older form Aq_reportNbrAcquiredSegments is deprecated. 

Please convert to the newer version.
Programmer’s Reference Manual

Device Driver Function Reference 2

AcqrsD1_resetDigitizerMemory

Purpose

Resets the digitizer memory to a known default state.

Parameters

Input

Return Value

Discussion

Each byte of the digitizer memory is overwritten sequentially with the values 0xaa, 0x55,
0x00 and 0xff. This functionality is mostly intended for use with battery backed-up
memories.

Visual C++ Representation

ViStatus status = AcqrsD1_resetDigitizerMemory(ViSession instrumentID);

LabVIEW Representation

Please refer to Acqrs_resetMemory.

Name Type Description

instrumentID ViSession Instrument identifier

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.
Programmer’s Reference Manual
MATLAB MEX Representation

[status] = AqD1_resetDigitizerMemory(instrumentID)
Note: The older form Aq_resetDigitizerMemory is deprecated.

Please convert to the newer version or Aq_resetMemory.
159

2 Device Driver Function Reference

AcqrsD1_restoreInternalRegisters

Purpose

Restores some internal registers of an instrument.
Only needed after power-up of a digitizer with the battery back-up option.

Parameters

Input

Return Value

Discussion

The normal startup sequence destroys the contents of the Acqiris digitizer memories.
This function, together with a specific sequence of other function calls, prevents this
from occurring in digitizers with battery backed-up memories.

Please refer to the Programmer’s Guide section 3.19, Readout of Battery Backed-up
Memories, for a detailed description of the required initialization sequence to read
battery backed-up waveforms.

Name Type Description

instrumentID ViSession Instrument identifier
delayOffset ViReal64 Global delay offset, should be retrieved with

Acqrs_getInstrumentInfo (…, “DelayOffset”, ..)
before power-off.
If not known, use the value –20.0e-9

delayScale ViReal64 Global delay scale, should be retrieved with
Acqrs_getInstrumentInfo (…, “DelayScale”, ..)
before power-off.
If not known, use the value 5.0e-12

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.
160 Programmer’s Reference Manual

Device Driver Function Reference 2
Visual C++ Representation

ViStatus status = AcqrsD1_restoreInternalRegisters(ViSession instrumentID,
ViReal64 delayOffset, ViReal64 delayScale);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Restore Internal Registers.vi
Programmer’s Reference Manual
MATLAB MEX Representation

[status] = AqD1_restoreInternalRegisters(instrumentID, delayOffset, delayScale)
Note: The older form Aq_restoreInternalRegisters is deprecated.

Please convert to the newer version.

161

2 Device Driver Function Reference

AcqrsD1_stopAcquisition

Purpose

Stops the acquisition.

Parameters

Input

Return Value

Discussion

This function will stop the acquisition and not return until this has been accomplished.
The data is not guaranteed to be valid. To obtain valid data after "manually" stopping the
acquisition (e.g. timeout waiting for a trigger), one should use the function
AcqrsD1_forceTrig to generate a "software" (or "manual") trigger, and then continue
polling for the end of the acquisition with AcqrsD1_acqDone. This will ensure correct
completion of the acquisition.

Visual C++ Representation

ViStatus status = AcqrsD1_stopAcquisition(ViSession instrumentID);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Stop Acquisition.vi

Name Type Description

instrumentID ViSession Instrument identifier

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.
162
MATLAB MEX Representation

[status] = AqD1_stopAcquisition(instrumentID)
Note: The older form Aq_stopAcquisition is deprecated.

Please convert to the newer version.
Programmer’s Reference Manual

Device Driver Function Reference 2

AcqrsD1_stopProcessing

Purpose

Stops on-board data processing. This routine is for Analyzers only.

Parameters

Input

Return Value

Discussion

This function will stop the on-board data processing immediately. The output data is not
guaranteed to be valid.

Visual C++ Representation

ViStatus status = AcqrsD1_stopProcessing(ViSession instrumentID);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Stop Processing.vi

Name Type Description

instrumentID ViSession Instrument identifier

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.
Programmer’s Reference Manual
MATLAB MEX Representation

[status] = AqD1_stopProcessing(instrumentID)
Note: The older form Aq_stopProcessing is deprecated.

Please convert to the newer version.
163

2 Device Driver Function Reference

AcqrsD1_waitForEndOfAcquisition

Purpose

Waits for the end of acquisition.

Parameters

Input

Return Value

Discussion

This function will return only after the acquisition has terminated or when the requested
timeout has elapsed, whichever comes first. For protection, the timeout is clipped to a
maximum value of 10 seconds. If a larger timeout is needed, call this function
repeatedly.

While waiting for the acquisition to terminate, the calling thread is put into 'idle',
permitting other threads or processes to fully use the CPU.

If a channel or trigger overload was detected, the returned status is always
ACQIRIS_ERROR_OVERLOAD. Else, if the acquisition times out, the returned status is
ACQIRIS_ERROR_ACQ_TIMEOUT, in which case you should use either
AcqrsD1_stopAcquisition or AcqrsD1_forceTrig to stop the acquisition. Otherwise, the
returned status is VI_SUCCESS.

Visual C++ Representation

ViStatus status = AcqrsD1_waitForEndOfAcquisition (ViSession instrumentID, ViInt32 timeout);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Wait For End Of Acquisition.vi

Name Type Description

instrumentID ViSession Instrument identifier
timeout ViInt32 Timeout in milliseconds

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.
164
MATLAB MEX Representation

[status] = AqD1_waitForEndOfAcquisition(instrumentID, timeOut)
Note: The older form Aq_waitForEndOfAcquisition is deprecated.

Please convert to the newer version.
Programmer’s Reference Manual

Device Driver Function Reference 2

AcqrsD1_waitForEndOfProcessing

Purpose

Waits for the end of on-board data processing. . This routine is for Analyzers only.

Parameters

Input

Return Value

Discussion

This function will return only after the on-board processing has terminated or when the
requested timeout has elapsed, whichever comes first. For protection, the timeout is
clipped to a maximum value of 10 seconds. If a larger timeout is needed, call this
function repeatedly.

While waiting for the processing to terminate, the calling thread is put into 'idle',
permitting other threads or processes to fully use the CPU.

If the processing times out, the returned status is ACQIRIS_ERROR_PROC_TIMEOUT, in
which case you should use AcqrsD1_stopProcessing to stop the processing.
Otherwise, the returned status is VI_SUCCESS.

Visual C++ Representation

ViStatus status = AcqrsD1_waitForEndOfProcessing(ViSession instrumentID, ViInt32 timeout);

LabVIEW Representation

Acqiris Dx.lvlib: (or Aq Dx) Wait For End Of Processing.vi

Name Type Description

instrumentID ViSession Instrument identifier
timeout ViInt32 Timeout in milliseconds

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.
Programmer’s Reference Manual
MATLAB MEX Representation

[status] = AqD1_waitForEndOfProcessing(instrumentID, timeOut)
Note: The older form Aq_waitForEndOfProcessing is deprecated.

Please convert to the newer version.
165

166

2 Device Driver Function Reference

Programmer’s Reference Manual

	Foreword
	TABLE OF CONTENTS
	Introduction
	Message to the User
	Using this Manual
	Conventions Used in This Manual
	Warning Regarding Medical Use

	Device Driver Function Reference
	Status values and Error codes
	API Function classification
	AgMD1Fundamental.h functions
	API Function descriptions
	Acqrs_calibrate
	Acqrs_calibrateCancel
	Acqrs_calibrateEx
	Acqrs_calLoad
	Acqrs_calRequired
	Acqrs_calSave
	Acqrs_close
	Acqrs_closeAll
	Acqrs_configLogicDevice
	Acqrs_errorMessage
	Acqrs_getDevType
	Acqrs_getDevTypeByIndex
	Acqrs_getInstrumentData
	Acqrs_getInstrumentInfo
	Acqrs_getNbrChannels
	Acqrs_getNbrInstruments
	Acqrs_getVersion
	Acqrs_init
	Acqrs_InitWithOptions
	Acqrs_logicDeviceIO
	Acqrs_powerSystem
	Acqrs_reset
	Acqrs_resetMemory
	Acqrs_resumeControl
	Acqrs_setAttributeString
	Acqrs_setLEDColor
	Acqrs_setSimulationOptions
	Acqrs_suspendControl
	AcqrsD1_acqDone
	AcqrsD1_acquire
	AcqrsD1_acquireEx
	AcqrsD1_bestNominalSamples
	AcqrsD1_bestSampInterval
	AcqrsD1_configAvgConfig
	AcqrsD1_configAvgConfigInt32
	AcqrsD1_configAvgConfigReal64
	AcqrsD1_configChannelCombination
	AcqrsD1_configControlIO
	AcqrsD1_configExtClock
	AcqrsD1_configFCounter
	AcqrsD1_configHorizontal
	AcqrsD1_configMemory
	AcqrsD1_configMemoryEx
	AcqrsD1_configMode
	AcqrsD1_configMultiInput
	AcqrsD1_configSetupArray
	AcqrsD1_configTrigClass
	AcqrsD1_configTrigSource
	AcqrsD1_configTrigTV
	AcqrsD1_configVertical
	AcqrsD1_errorMessage
	AcqrsD1_errorMessageEx
	AcqrsD1_forceTrig
	AcqrsD1_forceTrigEx
	AcqrsD1_freeBank
	AcqrsD1_getAvgConfig
	AcqrsD1_getAvgConfigInt32
	AcqrsD1_getAvgConfigReal64
	AcqrsD1_getChannelCombination
	AcqrsD1_getControlIO
	AcqrsD1_getExtClock
	AcqrsD1_getFCounter
	AcqrsD1_getHorizontal
	AcqrsD1_getMemory
	AcqrsD1_getMemoryEx
	AcqrsD1_getMode
	AcqrsD1_getMultiInput
	AcqrsD1_getSetupArray
	AcqrsD1_getTrigClass
	AcqrsD1_getTrigSource
	AcqrsD1_getTrigTV
	AcqrsD1_getVertical
	AcqrsD1_multiInstrAutoDefine
	AcqrsD1_multiInstrDefine
	AcqrsD1_multiInstrUndefineAll
	AcqrsD1_procDone
	AcqrsD1_processData
	AcqrsD1_readData
	AcqrsD1_readFCounter
	AcqrsD1_reportNbrAcquiredSegments
	AcqrsD1_resetDigitizerMemory
	AcqrsD1_restoreInternalRegisters
	AcqrsD1_stopAcquisition
	AcqrsD1_stopProcessing
	AcqrsD1_waitForEndOfAcquisition
	AcqrsD1_waitForEndOfProcessing

